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Why Projective Transform?

• Aerial surveillance is increasingly important to DoD
• Video / Image understanding needs image processing
• Projective transform is a key image processing kernel

Presenter
Presentation Notes
Note that all images are available from multiple web sites.
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Projective Transform

• Projective Transform is a specialized Warp Transform
– Performs zoom, rotate, translate, and keystone warping
– Straight lines are preserved

• Projective Transform registers images from airborne cameras
– Position of the camera determines the coefficients of the warp 

matrix

Source Image Destination Image

extent box

ROI

ROI

Presenter
Presentation Notes
Projective transform is described here in general terms without the need for mathematics.
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Cell Features

Synergistic Processing Element

•128 SIMD Registers, 128 bits wide

•Dual issue instructions

Local Store

•256 KB Flat memory
Memory Flow 
Controller

•Built in DMA Engine

Element Interconnect Bus
•4 ring buses

•Each ring 16 bytes wide

•½ processor speed

(VMX)

•Overall Performance
• Peak FLOPS @ 3.2 GHz:  204.8 GFLOPS (single), 14.6 GFLOPS (double) 

• Processor to Memory bandwidth: 25.6 GB/s

• Power usage: ~100 W  (estimated)

• Cell gives ~2 GFLOPS / W

Cell’s design for 
games should make it 
a good image 
processing processor

•Max bandwidth 96 bytes / cycle (204.8 GB/s @ 3.2 GHz)

Presenter
Presentation Notes
Max bandwidth taken from T. Chen et. al., Cell Broadband Engine Architecture and its first implementation: A performance view,

IBM, 2005 .  Other numbers are based on Mercury’s best system available at this time running at 3.2 GHz.
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Preliminary Analysis
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S
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Transform Non-homogeneous 
Coordinates

Interpolation

9 multiplies
6 adds 15 OP

2 divisions = 2*4 = 8 OP
Cell: 1 division = 4 OP 

6 multiplies
6 adds

Op count to compute 
1 pixel value: 35 
Complexity: O(n)

12 OP

Presenter
Presentation Notes
An early analysis of number of operations for projective transform.
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Parallel Approach

• The output image is partitioned into tiles
• Each tile is mapped onto the input image
• Tiles in the output image are partitioned onto SPEs

– Tiles are distributed “round robin”

SPE 0

SPE 1

SPE 2

SPE 3

Source Image (1024 x 1280) Destination Image (1024 x 1024)Map Destination 
to Source

Tile (256 x 256)

Presenter
Presentation Notes
This slide describes how the problem is divided among the SPEs
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Parallel Approach

• For each tile an extent box is calculated for loading into the local 
store

– Extent box cannot extend outside of source image
– Sizes of extent boxes vary within images as well as between images
– Irregular overlaps between adjacent boxes prevent reuse of data

• Performance is 
improved by processing 
whole and partial blocks 
in code separately

Overlap between 
adjacent extent boxes

extent box

• Extent box determines the pixels that 
are copied to an SPE’s local store

Presenter
Presentation Notes
This slide completes the description of the tile parallelization.
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Mercury Cell Processor Test System

Mercury Cell Processor System
• Single Dual Cell Blade

– Native tool chain
– Two 3.2 GHz Cells running in SMP mode
– Terra Soft Yellow Dog Linux 2.6.17

• Received 03/21/06
– Booted & running same day
– Integrated/w LL network < 1 wk
– Octave (Matlab clone) running
– Parallel VSIPL++ compiled

• Upgraded to 3.2 GHz December, 2006

• Each Cell has 205 GFLOPS (single precision ) 
– 410 for system @ 3.2 GHz (maximum)

Software includes:
• IBM Software Development Kit (SDK)

– Includes example programs
• Mercury Software Tools

– MultiCore Framework (MCF)
– Scientific Algorithms Library (SAL)
– Trace Analysis Tool and Library (TATL)

Presenter
Presentation Notes
Picture of workstation is taken from Mercury web site.  Picture of blade was supplied by Mercury.
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Mercury MCF

• Leveraging vendor libraries reduces development time 
• Provides optimization
• Less debugging of application

• MultiCore Frameworks (MCF) 
manages multi-SPE programming

– Function offload engine model
– Stripmining
– Intraprocessor communications
– Overlays
– Profiling

• Tile Channels expect regular tiles 
accessed in prescribed ordered

– Tile channels are good for many common 
memory access patterns

• Irregular memory access requires 
explicit DMA transfers

Presenter
Presentation Notes
Mercury Computer Systems provides high performance tools that really help the user.  Similar offerings are available on many other vendor’s products.  The advantage, in addition to the high performance is that they have done the development work and debugging which saves the user a lot of work.
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PPE Manager Communications

rc = mcf_m_tile_channel_put_buffer(h_net,
h_channel_extbox,
&buf_desc_extbox,
MCF_WAIT,
NULL);

rc = mcf_m_tile_channel_get_buffer(h_net,
h_channel_dst,
&buf_desc_dst,
MCF_WAIT,
NULL);

// Disconnect tile channels
rc = mcf_m_tile_channel_disconnect(h_net,

h_channel_extbox,
MCF_WAIT);

An excerpt from manager code
VMX

L2
L1

PPE

• Manager responsibilities
– Allocate SPEs
– Manage higher level memory
– Notify SPEs data is ready
– Wait for SPEs to release data
– Initiate clean up 

• MCF Tile channel programs 
are data driven

• Manager communicates 
with SPEs via EIB 

Presenter
Presentation Notes
We have chosen to show only the portion of code that interacts with the actual execution of the computation here.  On the PPE side, this isn’t much.  The actual code was determined earlier in some set up code.  Here the “put_buffer” is an agreement to let the SPEs take control of the memory and then tell the SPEs to start their computations.  The “get_buffer” waits for the SPEs to complete and then regains control over the memory.  The disconnect starts the clean up code.
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SPE Worker Communications

while (mcf_w_tile_channel_is_not_end_of_frame(h_channel_dst))
{

// Get a destination image block
rc = mcf_w_tile_channel_get_buffer(h_channel_dst, &buf_desc_dst,

MCF_RESERVED_FLAG, NULL);

// If this is the first tile to be processed, then fill the DMA queue
// Wait for the right dma to complete
rc = mcf_w_dma_wait(dma_tag,MCF_WAIT);

// Call projective transform kernel
if (ispartial[dma_tag])
{  // Process a partial block
ptInterpolateBlockPart(

(unsigned short*) alloc_desc_src[dma_tag]->pp_buffer[0],
(unsigned short*) buf_desc_dst->pp_buffer[0],
eb_src[dma_tag].x0, eb_src[dma_tag].y0,

&eb_dst[dma_tag], coeffs, src_sizeX-1, src_sizeY-1);
}
else
{   // Process a whole block
ptInterpolateBlock(

(unsigned short*) (alloc_desc_src[dma_tag]->pp_buffer[0]),
(unsigned short int*) buf_desc_dst->pp_buffer[0],
eb_src[dma_tag].x0, eb_src[dma_tag].y0,
&eb_dst[dma_tag], coeffs);

… // load next extent box contents and other operations

rc = mcf_w_tile_channel_put_buffer(h_channel_dst,
&buf_desc_dst, MCF_RESERVED_FLAG,
NULL);

An excerpt from worker code

SPE

MFCLS

• SPE Communication Code
– Allocates local memory
– Initiates data transfers to and 

from XDR memory
– Waits for transfers to 

complete
– Calls computational code

• SPE communications code 
manages strip mining of  
XDR memory 

Presenter
Presentation Notes
Here the worker has communication specific code.  This code invokes the computational code once the memory has been filled.
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Reference C

t1 = fI * coeffs[2][1] + coeffs[2][2];
t2 = fI * coeffs[0][1] + coeffs[0][2];
t3 = fI * coeffs[1][1] + coeffs[1][2];

for (j = min_j, fJ = (float)min_j; j <= max_j; j++, 
fJ += 1.0){

// Find position in source image
df = 1.0 / (fJ * coeffs[2][0] + t1);
xf = (fJ * coeffs[0][0] + t2) * df;
yf = (fJ * coeffs[1][0] + t3) * df;

// Find base pixel address and offsets
x = (int) xf;
y = (int) yf;
dx = (int)(256.0 * (xf - x));
dy = (int)(256.0 * (yf - y));

// Pick up surrounding pixels, bilinear interpolation
s = &srcBuffer[y - yOffset][x - xOffset];
rd = *s * (256 - dx) + *(s + 1) * dx;
s += BLOCKSIZE << 1;
yr = *s * (256 - dx) + *(s + 1) * dx;
rd = rd * (256 - dy) + yr * dy;
*ptrRunning = rd >> 16;   //  Write to des. image
ptrRunning++;

Computational Code for Row in Whole Tile in ANSI C

• C is a good start for code 
design

– Speed not important

Find precise position in image

Find upper left pixel and offsets

Estimate pixel value using   
bi-linear interpolation

Presenter
Presentation Notes
The reference C is oriented towards solving a problem.  The major optimization techniques on the part of the programmer are accessing memory well, writing good C code, and selecting compiler switches.  Most C implementations have little sensitivity to the underlying hardware.
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C with SIMD Extensions

sptr = (unsigned short *)spu_extract(y2,0);
s1 = *sptr;

yr = spu_add(spu_mulo((vector unsigned short)LL,
(vector unsigned short)xdiff),

spu_mulo((vector unsigned short)LR,
(vector unsigned short)dx1));

s2 = *(sptr + 1);
s3 = *(sptr + si_to_int((qword)twoBlocksize));

rd1 = spu_add(
spu_add(

spu_add(
spu_mulo((vector unsigned short)rd1,

(vector unsigned short)ydiff),
(vector unsigned int)spu_mulh(

(vector signed short)rd1,
(vector signed short)ydiff)),

spu_add((vector unsigned int)spu_mulh(
(vector signed short)ydiff,
(vector signed short)rd1),

spu_mulo((vector unsigned short)yr,
(vector unsigned short)dy1))),

spu_add((vector unsigned int)spu_mulh(
(vector signed short)yr,
(vector signed short)dy1),

(vector unsigned int)spu_mulh(
(vector signed short)dy1,
(vector signed short)yr)));

An excerpt from SIMD version of Projective Transform

SPE

MFCLS

// Pick up surrounding pixels, bilinear interpolation
s = &srcBuffer[y - yOffset][x - xOffset];
rd = *s * (256 - dx) + *(s + 1) * dx;
s += BLOCKSIZE << 1;

yr = *s * (256 - dx) + *(s + 1) * dx;

rd = rd * (256 - dy) + yr * dy;

Bi-linear Interpolation from ANSI C Version

• SIMD C is more complicated than 
ANSI C

– Does not follow same order
• SPE only sees local store memory

Presenter
Presentation Notes
With C extensions, the user has limited visibility of the hardware.  This code is not perfectly timed, but there has been significant consideration given to pipeline latencies, etc.   It is possible to build better code than this with C extensions.  However, with IBM’s XLC, the lack of overloading for simple binary operations (+, -, *) and the strict typecast enforcement, which does nothing on the assembly level, assembly coding starts to look attractive.
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Rounding and Division

df = 1.0 / (fJ * coeffs[2][0] + t1);
xf = (fJ * coeffs[0][0] + t2) * df;
yf = (fJ * coeffs[1][0] + t3) * df;

x = (int) xf;  // Note that next step is “float to fix”
y = (int) yf;

ANSI C Implementation

//df = vector float(1.0) / (fJ * vector float(*(coeffs + 6)) + T1);

yf = spu_madd(fJ, spu_splats(*(coeffs + 6)), T1);
df = spu_re(yf);            // y1 ~ (1 / x), 12 bit accuracy
yf = spu_nmsub(yf, df, f1); // t1 = -(x * y1 - 1.0)
df = spu_madd(yf, df, df);    

// y2 = t1 * y1 + y1, done with 
// Newton Raphson

xf = spu_madd(fJ, spu_splats(*coeffs), T2);
yf = spu_madd(fJ, spu_splats(*(coeffs + 3)), T3);
xf = spu_mul(xf, df);
yf = spu_mul(yf, df);

// nudge values up to compensate for truncation
xf = (vector float)spu_add((vector unsigned int) xf, 1);
yf = (vector float)spu_add((vector unsigned int) yf, 1);

SIMD C Implementation with Minimal Correction

• Truncation forces some changes in special algorithms for accuracy

• Division takes extra steps
• Data range and size may allow 

shortcuts
• Expect compiler dependent 

results

Presenter
Presentation Notes
Truncation rounding presents challenges to conventional algorithms built for “round to nearest value” systems.  If the straight Newton Raphson algorithm is used, 1.0 / 1.0 = .99999994 (0x3f7fffff).  A fully accurate divide has many more step than we use here.  We can use this simple correction since our data never saturates the exponent, and the next step is to truncate the value.  If this were a general “vdiv”, the more robust algorithm would be needed for accuracy.
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• SLOCs and Coding Performance
• Compiler Performance
• Covering Data Transfers

Outline

• Overview

• Approach

• Coding Tour

• Results

• Summary
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SLOCs and Coding Performance

SLOCS GOPS  
(10 M pix)

ANSI C 
(PPE)

52 0.126

ANSI C 
(SPE)

97 0.629

SIMD C 512 4.20

Parallel 
SIMD

1248 27.41

• Clear tradeoff between performance and effort
– C code simple, poor performance
– SIMD C, more complex to code, reasonable performance

Software Lines of Code and Performance for Projective 
Transform
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ANSI C on PPE

SIMD C on 8 SPEs

SIMD C on 1 SPE

ANSI C on SPE

Presenter
Presentation Notes
All timings are made on a 10 M pixel image.  The speedup factor from 1 SPE to 8 SPEs is 6.5, not 8.  Overhead is the likely source of this.  The 8 SPE solution is 217.5 times faster than the PPE solution.  We should expect that the PPE code could also be improved by writing it for the VMX (a.k.a. AltiVec) unit, but it will not see the speed of the SPEs.
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Compiler Performance

• XLC outperforms GCC / G++ on SPEs
– Significant improvement for serial ANSI C code
– Some improvement with SIMD code

• GOPS (giga operations per second) 
based on 40 operations / pixel

• 1 SPE used
• Compiler switches vary, but basic 

level of optimization is the same (-O2)
• Performance will vary by image size 

(10 M pixel image used)
• XLC only used on SPE code

ANSI C SIMD C

GCC / G++
(v. 4.1.1)
(GOPS)

0.182 3.68

XLC
(v. 8.01)
(GOPS)

0.629 4.20

XLC / GCC 3.46 1.14

Presenter
Presentation Notes
Compiler results for projective transform
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Covering Data Transfers

Projective Transform
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Projective Transform

• Timing for projective transform scales with image size

• 8 SPEs are used
• About 2 msec overhead
• Computation dominates

– Assembly code 
would be the next 
optimization if 
needed

• Communications are 
partially covered by 
computations

Presenter
Presentation Notes
While the computations do not perfectly hide the communications, this approach may satisfy the needs of the application.  In the end the only goal is for the application to handle the data stream.  
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Summary

• Good Cell programming takes work
– Compiler choice can noticeably affect performance, 

particularly if ANSI C is used
– SIMD C/C++ extensions perform much better than ANSI 

C/C++, but at the price of code complexity
– Middleware such as Mercury’s MCF makes coding easier
– Rounding mode on SPEs presents challenges to users

• Better middleware will make programming easier for users
– There needs to be a level of programming where the user 

does not have to become a Cell expert

Presenter
Presentation Notes
Summary slide
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Backup

Presenter
Presentation Notes
End of presentation
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The Plan

OP Count Assumptions:
Transform: 3 mults + 3 adds = 6 OPs
Total op count: 6+12+8 = 26 OPs/pixel

Total operation count requirement/second:
• 26 OPs/pixel * 11,000,000 pixels/frame * 4 frames = 

1,144,000,000 OPS = 1.144 gigaOPS 
1 SPE processing capability:
• 25.6 GFLOPS
Time complexity calculation assumptions:
• Each pixel is 16 bits or 2 bytes
• 1 SPE
• Sub-image size conducive to double-buffering
• Double buffering is not used

(Assume  that operations on 2 byte integers cost the 
same as operations on single precision, 4 byte, 
floating point numbers) 

OP Count Assumptions:
Transform: 3 mults + 3 adds = 6 OPs
Total op count: 6+12+8 = 26 OPs/pixel

Total operation count requirement/second:
• 26 OPs/pixel * 11,000,000 pixels/frame * 4 frames = 

1,144,000,000 OPS = 1.144 gigaOPS
1 SPE processing capability:
• 25.6 GFLOPS
Time complexity calculation assumptions:
• Each pixel is 16 bits or 2 bytes
• 1 SPE
• Sub-image size conducive to double-buffering
• Double buffering is not used

(Assume  that operations on 2 byte integers cost the 
same as operations on single precision, 4 byte, 
floating point numbers)

Local Store (LS) = 256 KB
Assume 80KB dedicated to MCF and other code
• 256 - 80 = 176 KB for data
Allow another 20% space for incidentals
• 176 KB * 0.8 = 140.8 KB for data
• 140.8 KB * 1024 = 144,180 bytes
Number of pixel that fit into LS
• 144,180 bytes / (2 bytes/pixel) = 72,090 pixels 
Need to store both source and destination sub-image
(For 1 unit of destination space, need 4 units of source)
• 72,090 pixels / (1+4) = 14,418 pixels of destination can be 

computed on a single SPE
Setup for double buffering 
• 14,418/2 ~= 7,000 pixels can be computed in LS
To compute each pixel, need to transfer in source (4*7000 

pixels*2 bytes/pixel) and transfer out the destination (7000 
pixels*2 bytes/pixel)

To compute 7,000 pixels in the destination, have to transfer 
(5*7000*2) = 70,000 bytes

Time complexity of data transfer (ignore latency) at 25.6 GB/s
70,000 bytes/25.6*109 bytes/sec = 2.73*10-6 sec
Time complexity of computation at 25.6 GFLOPS
• (7,000 pixels * 26 OP/pixel)/25.6*109FLOPS = 7.11*10-6

Number of 7000 pixel blocks in 11MPixel image
11,000,000/7,000 = 1572
Time complexity of computing 4 frames
• 4 frames * 1572 blocks *(2.73*10-6+7.11*10-6) = 0.0620 sec

• Estimating the algorithm 
and communication 
requirements helps to 
predict performance

Preliminary estimate of resources needed for Projective Transform

Presenter
Presentation Notes
This is an actual plan for the projective transform.  We do not expect that it will be accurate, but it gives us some understanding of where we want to go and what to expect.  The assumptions for this plan are conservative since it is better to over estimate the time than to give an unattainable time.
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