
Projective Transform on Cell: A Case Study
Sharon M. Sacco, Hahn Kim, Sanjeev Mohindra, Peter Boettcher, Chris Bowen,

Nadya Bliss, Glenn Schrader, and Jeremy Kepner
MIT Lincoln Laboratory

{ssacco, hgk, smohindra, boettcher, cbowen, nt, gschrad, kepner}@ll.mit.edu

Abstract
DoD optical applications typically use mobile cameras. In
these systems a single image from a camera will be shifted,
rotated, tilted, or scaled when compared to the previous
image. Image processing can standardize the view of a
sequence of images allowing further feature extraction.
Here we discuss the development of one correction method,
projective transform, for the Sony/Toshiba/IBM Cell
processor.

Projective Transform
Projective transform is a powerful tool for standardizing
images. Projective transforms are homogeneous warp
transforms. The key feature of the projective transform is
that straight lines in the source image remain straight lines
in the processed image. [1]

Fig. 1: Projective transform removes distortions from an

image and orients the image

Each pixel in the destination image is mapped to a location
in the source image. The source location is typically not on
a pixel position. A group of pixels around the source
position are gathered, and an interpolation is performed to
find the pixel value in the destination image.

Parallel Approach
For mobile cameras, the warp coefficients will typically
vary from image to image. For each output pixel in the
destination image, the corresponding source image pixels
will change from image to image. This dynamic mapping
does not fit the classic data reorganization patterns.

The Cell architecture requires that all data necessary for a
calculation be efficiently loaded into the local store. The

 This work is sponsored by AFRL under Air Force contract FA8721-05-C-
0002. Opinions, interpretations, conclusions and recommendations are
those of the author and not necessarily endorse by the United States
Government.

distribution chosen for the projective transpose problem is a
block distribution of the output image. For each output
block, an extent box from the source image can be
calculated and its content preloaded. Typically, adjacent
blocks have overlapping source extent boxes. Minimizing
the edges of the output distribution will reduce the overlap
and minimize the number of data transfers.

For communications and data transfers between the PPE
and the SPE, we chose Mercury’s MCF library. This
library encapsulates standard parallel communications,
synchronization, and data reorganization as well as DMA
functions. We were able to apply data reorganization
methods to the output image. The corresponding input
image blocks used DMA functions based on pre-computed
extent boxes.

Computational kernels were encapsulated into functions.
This allowed easy upgrades for optimization purposes since
new versions could be written with the same API. In
addition, it was easy to verify the accuracy of the new
versions as the test images could be compared to the
original version.

extent box

ROI

Compiler Lessons with ANSI C Code
The Cell processor has been supported by two compiler
families since its introduction, GNU’s gcc/g++ and IBM’s
XLC C/C++. Both support separate versions for the PPU
and SPU. Both PPU compilers are now supporting 64-bit
addressing which is a change from last year.

ROI

Source Image Destination Image

Our concentration has been on the SPU compilers, spu-gcc
(4.0.2) and spuxlc (0.8.1) since they are responsible for
most of the performance of the Cell. Here we find
significant differences between the two compilers.

The performance of the projective transform was
significantly affected by the compiler selection. Typical
reports give spuxlc over spu-gcc performance improvement
as percentages less than 100%. The projective transform
had a 3x speedup for standard ANSI C code when built
with XLC rather than gcc. The assembler output from
spuxlc did not attempt to use SIMD calculations for this
application.

Computational accuracy is another concern. Sony /
Toshiba / IBM limit the rounding mode for 32-bit floating
point on the SPU to truncation. This poses computational
challenges if the goal is to duplicate IEEE 754 results
obtained from other processors such as x86 and PowerPC.
We found that spuxlc handled some rounding difficulties
better than spu-gcc.

SIMD Coding Experiences
A vectorizing compiler is clearly the simplest way to use
vector processors such as the Cell. This is not always an
option for all compilers, and even if it is supported, it might
not be easy to use or provide sufficient performance.

A more reliable option is for the programmer to use SIMD
C extensions for the vector unit. These instructions are
very close to the underlying assembly language. This style
of programming can produce performance that rivals hand
assembly coding for a skilled programmer.

Both spu-gcc and spuxlc were used to compile the
computational code for the projective transform. The
difference between the two compilers is largely style and
convenience. spu-gcc is more user friendly in terms of
style than spuxlc. spu-gcc has added C/C++ like binary
operators for simple arithmetic. It is also more lenient
about typecasting.

SIMD coding also places more algorithmic burden on the
programmer. Standard mathematical functions that C/C++
users are accustomed to may not be supported as vector
extension. In particular, there is no SIMD support for
divide. This presents a challenge for the programmer,
particularly with the rounding mode.

Optimizing with MCF
In addition to optimizing the computations, communication
optimizations are also needed. Maximizing the destination
block size reduced overhead and improved performance as
expected.

While MCF tile channels can have multiple components,
for small amounts of data, such as the extent box
coordinates, performance was improved by combining the
data into a single structure to transfer. Using asynchronous
DMAs allowed communications and computations to
overlap.

Performance Results
Table 1 contains the results of timing for both ANSI C and
SIMD C code using either spu-gcc or spuxlc. In all cases,
the communications code is identical.

 GCC XLC

ANSI C 1.42 4.69

SIMD C 21.0 22.7

Table 1: Some typical performance measurements (GOPS) for
projective transpose on 8 SPEs

Again there is roughly a 3x speedup from gcc to XLC for
ANSI C in this application. If only a small speedup is
required for the application’s time budget, changing to XLC
may be enough. If more performance is needed, SIMD C
code gives improvement. Since it is close to assembly
code, the difference in performance between the two
compilers is small. The programmer has more
responsibility for scheduling once SIMD C is used. This
particular code was written with many optimization

techniques, but not at the level of highly optimized hand
coded assembly code.

Projective Transform

Fig. 2 Times for Projective Transform

Fig. 2 shows the time to perform projective transform as a
function of megapixels. The projective transform inner
loops were timed and accumulated for the computation.
The communication time is the projective transform
without the computations. It includes start up overhead as
well as memory allocation. The block size is 64 x 64 for
this case.

This graph shows linear behavior in all times over the
image sizes. We do not have perfect overlapping of
computation and communication at this point. Future
investigations will seek to improve the performance as
needed. From this graph we know that there needs to be
changes to lower overhead, increase the computation and
communication overlap, and improve the computational
performance. The time budget of the application as well as
the image size will dictate where we put our efforts.

Conclusions
Programming multi-core processors is not easy. The
programmer accustomed to traditional Von Neumann
architectures experiences a big increase in the coding
complexity. Understanding the tools, such as compilers,
and their capabilities is required. Using libraries such as
Mercury’s MCF can make it easier to program. Even with
the available tools, high performance programming still
takes more effort than in previous architectures.

References
[1] Many descriptions of projective transform are available on

the internet. For example see

 http://en.wikipedia.org/wiki/Projective_transformation

[2] International Business Machines Corp, Sony Computer
Entertainment Corp., and Toshiba Corp., “Synergistic
Processor Unit Instruction Set Architecture”, v1.11, © 2006.

[3] International Business Machines Corp, Sony Computer
Entertainment Corp., and Toshiba Corp., “C/C++ Language
Extensions for Cell Broadband Engine Architecture”, v2.2.1,
© 2006.

0

0

0.0

0

00

 4
80

x1
00

0

 8
80

x1
00

0

12
80

x1
00

0

16
80

x1
00

0

20
80

x1
00

0

00
0

00
0

32
80

x1
00

0

36
80

x1
00

0

40
80

x1
00

0

44
80

x1
00

0

48
80

x1
00

0

00
0

56
80

x1
00

0

60
80

x1
00

0

64
80

x1
00

0

68
80

x1
00

0

72
10

00 00
0

80
80

x1
00

0

84
80

x1
00

0

88
80

x1
00

0

92
80

x1
00

0

96
10

00

02

0.

0.0

0.0

0.

Ti
m

e
(s

ec
on

ds
)

04

06

08

0.01

012

0.014

0.016

0.018

 8
0x

1

24
80

x1

28
80

x1

52
80

x1

80
x

76
80

x1

80
x

Image size

Total Time

Communication
Computation

Projective Transform

18

Total Time 16

14

Ti
m

e
(m

ill
is

ec
on

ds
)

12

Computation 10

Communication8

6

4

2

0

0 2.5 5 7.5 10

Image Size (Megapixels)

