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Abstract  
DoD optical applications typically use mobile cameras.  In 
these systems a single image from a camera will be shifted, 
rotated, tilted, or scaled when compared to the previous 
image.  Image processing can standardize the view of a 
sequence of images allowing further feature extraction.  
Here we discuss the development of one correction method, 
projective transform, for the Sony/Toshiba/IBM Cell 
processor.    

Projective Transform 
Projective transform is a powerful tool for standardizing 
images.  Projective transforms are homogeneous warp 
transforms.  The key feature of the projective transform is 
that straight lines in the source image remain straight lines 
in the processed image. [1]   

 
 

                                                

 
Fig. 1: Projective transform removes distortions from an 

image and orients the image 

Each pixel in the destination image is mapped to a location 
in the source image.  The source location is typically not on 
a pixel position.  A group of pixels around the source 
position are gathered, and an interpolation is performed to 
find the pixel value in the destination image. 

Parallel Approach 
For mobile cameras, the warp coefficients will typically 
vary from image to image.  For each output pixel in the 
destination image, the corresponding source image pixels 
will change from image to image.  This dynamic mapping 
does not fit the classic data reorganization patterns. 

The Cell architecture requires that all data necessary for a 
calculation be efficiently loaded into the local store.  The 
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distribution chosen for the projective transpose problem is a 
block distribution of the output image.  For each output 
block, an extent box from the source image can be 
calculated and its content preloaded.  Typically, adjacent 
blocks have overlapping source extent boxes.  Minimizing 
the edges of the output distribution will reduce the overlap 
and minimize the number of data transfers. 

For communications and data transfers between the PPE 
and the SPE, we chose Mercury’s MCF library.  This 
library encapsulates standard parallel communications, 
synchronization, and data reorganization as well as DMA 
functions.  We were able to apply data reorganization 
methods to the output image.  The corresponding input 
image blocks used DMA functions based on pre-computed 
extent boxes. 

Computational kernels were encapsulated into functions.  
This allowed easy upgrades for optimization purposes since 
new versions could be written with the same API.  In 
addition, it was easy to verify the accuracy of the new 
versions as the test images could be compared to the 
original version. 
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Compiler Lessons with ANSI C Code 
The Cell processor has been supported by two compiler 
families since its introduction, GNU’s gcc/g++ and IBM’s 
XLC C/C++.  Both support separate versions for the PPU 
and SPU.  Both PPU compilers are now supporting 64-bit 
addressing which is a change from last year.   

ROI 

Source Image  Destination Image 

Our concentration has been on the SPU compilers, spu-gcc 
(4.0.2) and spuxlc (0.8.1) since they are responsible for 
most of the performance of the Cell.  Here we find 
significant differences between the two compilers.   

The performance of the projective transform was 
significantly affected by the compiler selection.  Typical 
reports give spuxlc over spu-gcc performance improvement 
as percentages less than 100%.  The projective transform 
had a 3x speedup for standard ANSI C code when built 
with XLC rather than gcc.  The assembler output from 
spuxlc did not attempt to use SIMD calculations for this 
application. 

Computational accuracy is another concern.  Sony / 
Toshiba / IBM limit the rounding mode for 32-bit floating 
point on the SPU to truncation.  This poses computational 
challenges if the goal is to duplicate IEEE 754 results 
obtained from other processors such as x86 and PowerPC.  
We found that spuxlc handled some rounding difficulties 
better than spu-gcc. 



SIMD Coding Experiences 
A vectorizing compiler is clearly the simplest way to use 
vector processors such as the Cell.  This is not always an 
option for all compilers, and even if it is supported, it might 
not be easy to use or provide sufficient performance.   

 

A more reliable option is for the programmer to use SIMD 
C extensions for the vector unit.  These instructions are 
very close to the underlying assembly language.  This style 
of programming can produce performance that rivals hand 
assembly coding for a skilled programmer. 

Both spu-gcc and spuxlc were used to compile the 
computational code for the projective transform.  The 
difference between the two compilers is largely style and 
convenience.  spu-gcc is more user friendly in terms of 
style than spuxlc.  spu-gcc has added C/C++ like binary 
operators for simple arithmetic.  It is also more lenient 
about typecasting. 

SIMD coding also places more algorithmic burden on the 
programmer.  Standard mathematical functions that C/C++ 
users are accustomed to may not be supported as vector 
extension.  In particular, there is no SIMD support for 
divide.  This presents a challenge for the programmer, 
particularly with the rounding mode. 

Optimizing with MCF 
In addition to optimizing the computations, communication 
optimizations are also needed.  Maximizing the destination 
block size reduced overhead and improved performance as 
expected.   

While MCF tile channels can have multiple components, 
for small amounts of data, such as the extent box 
coordinates, performance was improved by combining the 
data into a single structure to transfer.  Using asynchronous 
DMAs allowed communications and computations to 
overlap. 

Performance Results 
Table 1 contains the results of timing for both ANSI C and 
SIMD C code using either spu-gcc or spuxlc.  In all cases, 
the communications code is identical. 

 GCC XLC 

ANSI C 1.42 4.69 

SIMD C 21.0 22.7 

Table 1: Some typical performance measurements (GOPS) for 
projective transpose on 8 SPEs 

Again there is roughly a 3x speedup from gcc to XLC for 
ANSI C in this application.  If only a small speedup is 
required for the application’s time budget, changing to XLC 
may be enough.  If more performance is needed, SIMD C 
code gives improvement.  Since it is close to assembly 
code, the difference in performance between the two 
compilers is small.  The programmer has more 
responsibility for scheduling once SIMD C is used.  This 
particular code was written with many optimization 

techniques, but not at the level of highly optimized hand 
coded assembly code. 

Projective Transform

 
Fig. 2 Times for Projective Transform 

Fig. 2 shows the time to perform projective transform as a 
function of megapixels.  The projective transform inner 
loops were timed and accumulated for the computation.  
The communication time is the projective transform 
without the computations.  It includes start up overhead as 
well as memory allocation.  The block size is 64 x 64 for 
this case. 

This graph shows linear behavior in all times over the 
image sizes.  We do not have perfect overlapping of 
computation and communication at this point.  Future 
investigations will seek to improve the performance as 
needed.  From this graph we know that there needs to be 
changes to lower overhead, increase the computation and 
communication overlap, and improve the computational 
performance.  The time budget of the application as well as 
the image size will dictate where we put our efforts. 

Conclusions 
Programming multi-core processors is not easy.  The 
programmer accustomed to traditional Von Neumann 
architectures experiences a big increase in the coding 
complexity.  Understanding the tools, such as compilers, 
and their capabilities is required.  Using libraries such as 
Mercury’s MCF can make it easier to program.  Even with 
the available tools, high performance programming still 
takes more effort than in previous architectures. 
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