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QR transformation is used in many signal
processing applications including echo can-
cellation, denoising, and beamforming. It
is well known for its computational stability
and fast convergence. We have implemented
a systolic array QR transformation on a Xil-
inx Virtex5 FPGA using the Givens rotation
algorithm. The massively parallel nature of
this algorithm is well suited to an FPGA ar-
chitecture which can greatly reduce the com-
putation time. The latency of our implemen-
tation is very small and scales well for large
matrix sizes. It is also fully pipelined with a
throughput of over 130 MHz for IEEE single
precision floating-point format. The level of
parallelism is determined by the matrix size,
data format, and FPGA device used.

Design Architecture

The QR transformation of an m × n matrix
A is given by A = QR, where Q is an m×m
unitary matrix and R is an m×n upper trian-
gular matrix. Givens rotations is one method
for solving QR by applying a series of rota-
tions to the rows of the original matrix. One
rotation introduces a zero in a lower trian-
gular 2× 2 sub-diagonal matrix as shown in
Eq. (1).
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The c and s stand for sine and cosine param-
eters and can be computed as follows:

c =
x√

x2 + y2
s = − y√

x2 + y2
(2)

Since one rotation involves only two matrix
rows, multiple rotations can be computed
in parallel if they operate on different rows,
leading to potentially massive parallelism.
Previous work on QR using Givens rotations
avoids divide and square root steps in the al-
gorithm by using either Logarithmic Number
System (LNS) [1] or CORDIC algorithm [2].
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Figure 1: QR Systolic Array Structure

Using Givens rotations, QR transforma-
tion can be performed by a highly parallel
implementation – a 2D systolic array archi-
tecture as shown in Fig. 1. This systolic
array includes two types of computational
processing element (PE) – diagonal and off-
diagonal. The diagonal PE generates rota-
tion parameters c and s as in Eq. (2) and
broadcasts them to all off-diagonal PEs in
the same row of the systolic array. The off-
diagonal PE updates other elements of the
two rows of the matrix involved in one ro-
tation. It starts upon receiving the c and
s from the diagonal PE from the same row.
The updated values are then sent to the PEs
in the next row of the systolic array. Upon
update completion, the new values of the first
off-diagonal PE are sent to the diagonal PE
below it, stimulating the computation of that
diagonal PE immediately. The new values of
the rest of the off-diagonal PEs have to be
stored in local memory before being passed
to the off-diagonal PEs in the next row. This
is because those next row off-diagonal PEs
cannot start computation until they get the c
and s from the diagonal PE of their row. For
an n×n square matrix, the systolic array has
n rows. Each row has one diagonal PE and
a set of off-diagonal PEs. Every off-diagonal
PE except the first one of a row has one lo-
cal memory of 8 words. The number of off-
diagonal PEs is n-1 in the first row, n-2 in the
second row, etc. Altogether n diagonal PEs,
n∗(n−1)

2 off-diagonal PEs, and (n−1)∗(n−2)
2 lo-
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Figure 2: Processing Element Data Flow

cal memories are needed. In addition to pro-
cessing a square matrix, our implementation
works for any size input matrix, with slightly
different systolic array structure and number
of PEs.

Fig. 2(a) shows one diagonal PE, which re-
quires two multipliers, one adder, one square
root and two dividers. All units are in
floating-point format and are modules in
the Northeastern University VFloat (Vari-
able Precision Floating-Point) library1. All
units including the floating-point divide and
square root [3] are fully pipelined, making
the diagonal PE fully pipelined. Fig. 2(b)
shows one off-diagonal PE, which has four
multipliers, one adder and one subtractor.

Results

The complete 2D systolic array was designed
targeting a Xilinx XC5VLX220 FPGA. The
design is in VHDL, synthesized using Syn-
plify Pro 8.8; and the bitstream is gener-
ated using Xilinx ISE 9.1i. Two floating-
point formats were implemented. One is
IEEE single precision with 8-bit exponent
and 23-bit mantissa; the other is a smaller
format with 8-bit exponent and 11-bit man-
tissa. To achieve maximum parallelism, we
explore fitting as many PEs as possible on a
XC5VLX220 FPGA,which has 138240 slices,
192 blockRAMs, and 128 embedded DSPs.
For an m < n short matrix, resources vary
with both the number of rows and columns.
For an m > n tall matrix, the resources are
almost independent of the number of rows.
A very tall matrix with m >> n requires
about the same resources as an n×n square
matrix. Our experiments show that a Xilinx
XC5VLX220 FPGA can fit an input matrix
with up to 7 columns for 23-bit format and
up to 12 columns for 11-bit format.

Table 1 gives the resources and speed for

1http://www.ece.neu.edu/groups/rcl/projects/

Table 1: Resources and Speed: XC5VLX220

Size Slice BRAM DSP Latency Freq.
(8,23) 126585 56 102 954 132
(8,11) 120094 30 106 335 139

a 7 × 7 matrix with 23-bit format and a
12 × 12 matrix with 11-bit format. Both
implementations have high throughput: 132
MHz for single precision and 139 MHz for
small format. Fig. 3 shows the latency as
matrix size varies from 2 to 7 for IEEE sin-
gle precision floating-point format. We esti-
mate the latency of a sequential implemen-
tation for comparison. For 23-bit format,
the latency of one diagonal PE and one off-
diagonal PE is 47 and 15 clock cycles respec-
tively. So the conservative total latency es-
timate is (47 + 15) ∗ n∗(n−1)

2 for core compu-
tation. For a 7× 7 matrix, it is about 1302,
which is longer than 954 realized in our par-
allel implementation. The difference is more
significant as matrix size grows. Compared
to the sequential implementation with O(n2)
latency, the latency of our systolic array im-
plementation increases linearly with matrix
size, making it scale well for larger matrices.
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Figure 3: Latency vs. Matrix Size
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