

Transformation of Sequential Software into Parallel FPGA Hardware:
A Case Study using the SPEC CPU 2006 Benchmark

Dr. Raymond R. Hoare II

Concurrent EDA, LLC, rayhoare@ConcurrentEDA.com

Abstract
FPGAs have proven themselves be faster than sequential
processors for a variety of applications. This is especially
true for applications in which the parallelism is extracted
and an FPGA hardware implementation is created by an
expert.

What happens when the application has been written in a
sequential language, like C, and compiled into a binary?
Can a high-performance FPGA hardware implementation
be created from the sequential binary? Can parallelism be
extracted and utilized?

In this paper we examine the SPEC CPU2006 benchmarks
and show that a high-speed FPGA hardware
implementation is possible and that it can be automated
using Concurrent EDA’s tools.

This paper presents a study performed by Concurrent EDA
using its Embedded Adrenaline design automation tool that
dramatically improves the performance of software through
the use of FPGA accelerators. The core concept is to
identify the bottlenecks in the code and accelerate them by
creating an application-specific FPGA co-processor. The
objective is to provide as much performance improvement
as possible within a given FPGA’s resource constraints.

The novelty of our approach is that we exploit both static
and dynamic knowledge of the software. That is to say that
we examine the software binary at the assembly level and
during execution. Recall that a desktop processor can
execute over a billion instructions per second. There is a
great deal of knowledge that is gained from dynamically
analyzing the software. This paper presents a summary of
our findings from executing the CPU 2006 benchmarks.

SPEC CPU 2006 Benchmarks
The following is a list is a partial list of benchmarks in the
SPEC CPU 2006 benchmark suite. For the final
submission, this abstract will provide an overview of our
methodology and a summary of the results that we
obtained.

• 401.bzip2 C Compression Julian Seward's bzip2
version 1.0.3, modified to do most work in memory,
rather than doing I/O.

• 429.mcf C Combinatorial Optimization Vehicle
scheduling. Uses a network simplex algorithm (which

is also used in commercial products) to schedule public
transport.

• 445.gobmk C Artificial Intelligence: Go Plays the
game of Go, a simply described but deeply complex
game.

• 456.hmmer C Search Gene Sequence Protein sequence
analysis using profile hidden Markov models (profile
HMMs)

• 462.libquantum C Physics / Quantum Computing
Simulates a quantum computer, running Shor's
polynomial-time factorization algorithm.

• 464.h264ref C Video Compression A reference
implementation of H.264/AVC, encodes a videostream
using 2 parameter sets. The H.264/AVC standard is
expected to replace MPEG2

• 482.sphinx3 C Speech recognition A widely-known
speech recognition system from Carnegie Mellon
University

THISIN ITS FINAL FORM WILL CONTAIN THE
FOLLOWING SECTIONS

Methodology
A description of our methodology.

Computational Complexity
A description of the computational complexity of
the benchmark code that collective consumes
80% of the execution time.

Extracted Parallelism

A description of the parallelism extracted using
static and dynamic analysis.

Performance Improvement
A description of the performance improvement
that is achievable using FPGAs.

Conclusions

