

Altera Corporation 101 Innovation Drive San Jose, CA 95134

High Performance Embedded Computing Workshop

18-20 September 2007

Algorithmic Gains with FPGA CoProcessing

- Many Off-Processor Acceleration Functions have been benchmarked for FPGA CoProcessing
- Acceleration Depends on Algorithm and Logic Division Process

Application	SW Only	HW Co-Processing	HW Speed Up
Hough & inverse Hough Processing	12 Minutes processing time Pentium 4 – 3Ghz	2 seconds of processing time @20Mhz	370x Faster
AES 1MB data processing/crypto rate Encryption Decryption	5,558ms/1.51MB/s 5,562ms/1.51MB/s	424ms/19.7MB/s 424ms/19.7MB/s	13xFaster
Smith Waterman ssearch34 from FASTA	6461 sec processing time (Opteron)	100 sec FPGA processing`	64xFaster
Multi-dimensional hypercube search	119.5 sec (Opteron 2.2Ghz)	1.06 sec FPGA@140Mhz	113xFaster
Callable Monte-Carlo Analysis (64,000 paths)	100 sec processing time (Opteron 2.4Ghz)	10 sec of processing @200Mhz FPGA	10xFaster
BJM Financial Analysis (5M paths)	6300 sec processing time (Pentium 4 – 1.5Ghz)	242 sec of processing @ 61Mhz FPGA	26xFaster
Mersenne Twister Random Number Generation	10M 32bit integers/sec (Opteron – 2.2Ghz)	319M 32bin integers/sec	3xFaster

Example—Financial Solution (50x +)

Intel

{Ⅲ

Solution Examples

(Xtreme Data Dual & Notional Quad Architecture)

- FPGA uses all motherboard resources meant for CPU:
 - HyperTransport Links, Memory interface, power supply, heat-sink
- Usable in rack-mount or highdensity, "blade" server systems, where PC boards don't work
 - Process is Scalable for Quad Processors
- Cores Available to interface with AMD HyperTransport
 - High Bandwidth, Low Latency
- Applications and Benchmarks
 Coming Soon!

