

SmartCell: A Coarse-Grained Reconfigurable Architecture for High Performance and Low Power Embedded Computing

Xinming Huang Depart. Of Electrical and Computer Engineering Worcester Polytechnic Institute <u>xhuang@wpi.edu</u>

High Performance Embedded Computing Workshop MIT Lincoln Laboratory 19th September 2007

- Thousands of pico-processors interconnected with high-speed switching fabrics within a single chip
 - Goal: low-power, high-performance, reconfigurable, and applicable

Energy efficiency perspectives

Performances of fully pipelined 16-tap FIR filter

A. I.I.	Dynami c Power	Core Power	Gate equivale nt
Smart- Cell	20.3 mW	2 <mark>1.7 m</mark> W	265 k
FPGA	157.6 mW	232.6 mW	82 k

Benchmark performance of FIR filters

2 by 2 SmartCell implementation:

- TSMC 130 nm ASIC library;
- 1.33 mm²;
- >500 MHz operating freq.;
- 10~18 times more power efficient than FPGA implementations;