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In this paper we present a Field Programmable Gate Array 
(FPGA) implementation of the core computation of the 
minimum LP norm phase unwrapping algorithm. This 
computation involves a Discrete Cosine Transform (DCT) 
of up to 1024 points and represents the largest DCT/iDCT 
implemented on an FPGA documented in the literature. 

Introduction 
There exist several applications that make use of coherent 
signals for imaging purposes. Coherent signals contain 
information about both magnitude and phase as opposed to 
incoherent ones that just contain magnitude information. 
Applications utilizing such signals include Synthetic 
Aperture Radar (SAR), Magnetic Resonance Imaging 
(MRI), optical interferometry and adaptive beamforming. 
Such applications often have a reference signal to which the 
received signal is compared (a stable local oscillator located 
in the radar unit in the case of SAR) and from that 
comparison the phase is extracted. However, this extraction 
is limited by the fact that the output phase will lie between 
π and – π. Hence, the raw output phase is referred to as 
wrapped. 

 

Given a noise free signal, the original phase can be 
recovered by accumulating the phase difference and an 
integer multiple of 2π every time a discontinuity is detected. 
In the presence of noise however, such an unwrapping can 
fail catastrophically in the 2 dimensional case. 

Phase Unwrapping 
A set of methods has evolved as a solution to this problem, 
discussed and analyzed in [1]. They can be roughly 
classified into two groups: those that unwrap around noisy 
sections and those that use numerical error minimization 
techniques. One of the methods that consistently produces 
high quality results is the minimum LP norm technique. 
This iterative technique, which falls under the class of error 
minimization algorithms, operates by first making an initial 
guess as to the solution and then iteratively refining it. It 
uses the minimum P (i.e. P=0) since that allows the final 
data to match the measured data in as many places as 
possible (if P were set to 2, this would be the equivalent of 
a least squares minimization). Convergence of the 
algorithm is tested by checking for residues, else if it is not 
achieved the algorithm terminates after a preset number of 
iterations. A residue occurs when a closed loop integral on 
the two dimensional image data does not produce a zero, 
but instead produces either 2π or -2π. The presence of 
residues indicates that naïve unwrapping via accumulation 
cannot be performed.  

A simplified version of the phase unwrapping algorithm is: 

Initialize solution p 

For (k=0 to MAX_ITER) 

 Compute residues 

 If no residues, exit loop 

 Compute weights and weighted phase Laplacian c 

 Subtract weighted phase Laplacian of the current 
 solution p from the one just computed c 

 Solve Qp=c using Conjugate Gradient letting p be 
 the initial guess. 

End for 

A sample of the results produced by the minimum LP norm 
phase unwrap is displayed below in Figure 1.  

 

  
 

 

 

 

 

 

Figure 1: Wrapped phase above and unwrapped phase below. 
The image is of an embryo and was taken using Optical 
Quadrature Microscopy (OQM), an interference based 

microscopy method. 

The conjugate gradient solver makes use of a two 
dimensional Discrete Cosine Transform. This transform 
was found, through timing profiles, to occupy over 80 
percent of the total processing time and was thus the ideal 
candidate for implementation in hardware. 

Implementation 
The two dimensional DCT is separable, so it can be 
decomposed into one dimensional transforms that convert 



first the rows, and then the columns of the input data. By 
making use of this property, the hardware implementation 
can be broken into two sections: one that does the transform 
and another that selects and organizes the input/output. The 
work presented in this paper focuses on the transform 
section. 

The one dimensional DCT can be viewed as the real part of 
the Fourier transform of the even extension of an input 
signal. Makhoul [2] presented a method that solves a size N 
DCT using a size N/2 complex FFT. We use an adaptation 
of his method to perform DCTs using size N FFTs. The full 
optimal reduction is not performed in order to minimize the 
number of multiplications that must be performed due to 
accuracy considerations. 

The algorithm can be viewed as a series of three steps, 
which are performed in reverse order for the inverse 
transform. The first step is a shuffle, which re-orders input 
data. This is the equivalent of extracting the odd elements 
from x(n) and mirroring them around the N/2 point. The 
second step is to perform the FFT. This transform 
component must be capable of handling one dimensional 
transforms of both M and N (where M, N are the 
dimensions of the input image matrix) and performing both 
forward and inverse transforms. Finally, the last step is to 

multiply the result by N
kj

e 22
π−

which results in the equivalent 
of a forward DCT. 

This construction lends itself to a clear component 
breakdown, i.e. a shuffle component, an FFT component 
and a rebuilding component. The shuffle component 
reorders input according to the equation above and writes it 
in shuffled order to BRAM.  

 a)  b)  

Figure 1: Dataflow diagram for the forward (a) and inverse 
(b) transforms 

This is then transformed using the Xilinx FFT core [3] and 

the result is multiplied by N
kj

e 22
π−

 which is generated using a 
lookup table.  

 

The inverse transform moves data in the other direction, 

starting of with a multiplication by N
kj

e 22
π

 followed by an 
IFFT and then an inverse shuffle that maps v(n) to x(n), i.e 
the opposite of Equation 1. A more complete analysis can 
be found in [4]. 

Results And Conclusions 
The various components and controller discussed above 
were implemented on a PCI-based Annapolis Wildstar II 
Pro. The largest component in terms of both size and 
latency is the FFT component so the performance of the 
entire transform is highly dependent on the particular FFT 
implementation chosen, thus designers can take advantage 
of high performance FFT cores. The other components 
provide a fixed overhead of fourteen cycles independent of 
the transform size, one from the shuffle, nine from the 
rebuild_rotate unit and the rest from inter-component 
registering. 

The DCT component operates at over 100 MHz and 
occupies 32% of a single V2P70. This means that two DCT 
components can be put onto a single FPGA, thus increasing 
parallelism. This implementation has a significantly larger 
latency, but consumes much less area when compared to 
traditional matrix multiplication and Distributed Arithmetic 
(DA) approaches used to perform DCTs on FPGAs. 
However, such approaches are impractical for large 
transform sizes since the area requirement becomes 
prohibitive. For our design, latency is dependent on the size 
of the transform, but for 1024 point data, it takes 26us 
including full data transfer times into the DCT component 
from BlockRAM. 

Currently, a two dimensional transform is done by 
decomposing the image into rows and columns in software 
and then each row is streamed into the FPGA. The next part 
of this project to be completed is to copy the entire image to 
onboard SRAM and then control the row/column 
decomposition in hardware, thereby minimizing data 
transfer overhead from host to board. 
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