
Phase Unwrapping On Reconfigurable Hardware
Sherman Braganza, Miriam Leeser

Northeastern University
Boston, MA

{sbraganz, mel}@coe.neu.edu

In this paper we present a Field Programmable Gate Array
(FPGA) implementation of the core computation of the
minimum LP norm phase unwrapping algorithm. This
computation involves a Discrete Cosine Transform (DCT)
of up to 1024 points and represents the largest DCT/iDCT
implemented on an FPGA documented in the literature.

Introduction
There exist several applications that make use of coherent
signals for imaging purposes. Coherent signals contain
information about both magnitude and phase as opposed to
incoherent ones that just contain magnitude information.
Applications utilizing such signals include Synthetic
Aperture Radar (SAR), Magnetic Resonance Imaging
(MRI), optical interferometry and adaptive beamforming.
Such applications often have a reference signal to which the
received signal is compared (a stable local oscillator located
in the radar unit in the case of SAR) and from that
comparison the phase is extracted. However, this extraction
is limited by the fact that the output phase will lie between
π and – π. Hence, the raw output phase is referred to as
wrapped.

Given a noise free signal, the original phase can be
recovered by accumulating the phase difference and an
integer multiple of 2π every time a discontinuity is detected.
In the presence of noise however, such an unwrapping can
fail catastrophically in the 2 dimensional case.

Phase Unwrapping
A set of methods has evolved as a solution to this problem,
discussed and analyzed in [1]. They can be roughly
classified into two groups: those that unwrap around noisy
sections and those that use numerical error minimization
techniques. One of the methods that consistently produces
high quality results is the minimum LP norm technique.
This iterative technique, which falls under the class of error
minimization algorithms, operates by first making an initial
guess as to the solution and then iteratively refining it. It
uses the minimum P (i.e. P=0) since that allows the final
data to match the measured data in as many places as
possible (if P were set to 2, this would be the equivalent of
a least squares minimization). Convergence of the
algorithm is tested by checking for residues, else if it is not
achieved the algorithm terminates after a preset number of
iterations. A residue occurs when a closed loop integral on
the two dimensional image data does not produce a zero,
but instead produces either 2π or -2π. The presence of
residues indicates that naïve unwrapping via accumulation
cannot be performed.

A simplified version of the phase unwrapping algorithm is:

Initialize solution p

For (k=0 to MAX_ITER)

 Compute residues

 If no residues, exit loop

 Compute weights and weighted phase Laplacian c

 Subtract weighted phase Laplacian of the current
 solution p from the one just computed c

 Solve Qp=c using Conjugate Gradient letting p be
 the initial guess.

End for

A sample of the results produced by the minimum LP norm
phase unwrap is displayed below in Figure 1.

Figure 1: Wrapped phase above and unwrapped phase below.
The image is of an embryo and was taken using Optical
Quadrature Microscopy (OQM), an interference based

microscopy method.

The conjugate gradient solver makes use of a two
dimensional Discrete Cosine Transform. This transform
was found, through timing profiles, to occupy over 80
percent of the total processing time and was thus the ideal
candidate for implementation in hardware.

Implementation
The two dimensional DCT is separable, so it can be
decomposed into one dimensional transforms that convert

first the rows, and then the columns of the input data. By
making use of this property, the hardware implementation
can be broken into two sections: one that does the transform
and another that selects and organizes the input/output. The
work presented in this paper focuses on the transform
section.

The one dimensional DCT can be viewed as the real part of
the Fourier transform of the even extension of an input
signal. Makhoul [2] presented a method that solves a size N
DCT using a size N/2 complex FFT. We use an adaptation
of his method to perform DCTs using size N FFTs. The full
optimal reduction is not performed in order to minimize the
number of multiplications that must be performed due to
accuracy considerations.

The algorithm can be viewed as a series of three steps,
which are performed in reverse order for the inverse
transform. The first step is a shuffle, which re-orders input
data. This is the equivalent of extracting the odd elements
from x(n) and mirroring them around the N/2 point. The
second step is to perform the FFT. This transform
component must be capable of handling one dimensional
transforms of both M and N (where M, N are the
dimensions of the input image matrix) and performing both
forward and inverse transforms. Finally, the last step is to

multiply the result by N
kj

e 22
π−

which results in the equivalent
of a forward DCT.

This construction lends itself to a clear component
breakdown, i.e. a shuffle component, an FFT component
and a rebuilding component. The shuffle component
reorders input according to the equation above and writes it
in shuffled order to BRAM.

 a) b)

Figure 1: Dataflow diagram for the forward (a) and inverse
(b) transforms

This is then transformed using the Xilinx FFT core [3] and

the result is multiplied by N
kj

e 22
π−

 which is generated using a
lookup table.

The inverse transform moves data in the other direction,

starting of with a multiplication by N
kj

e 22
π

 followed by an
IFFT and then an inverse shuffle that maps v(n) to x(n), i.e
the opposite of Equation 1. A more complete analysis can
be found in [4].

Results And Conclusions
The various components and controller discussed above
were implemented on a PCI-based Annapolis Wildstar II
Pro. The largest component in terms of both size and
latency is the FFT component so the performance of the
entire transform is highly dependent on the particular FFT
implementation chosen, thus designers can take advantage
of high performance FFT cores. The other components
provide a fixed overhead of fourteen cycles independent of
the transform size, one from the shuffle, nine from the
rebuild_rotate unit and the rest from inter-component
registering.

The DCT component operates at over 100 MHz and
occupies 32% of a single V2P70. This means that two DCT
components can be put onto a single FPGA, thus increasing
parallelism. This implementation has a significantly larger
latency, but consumes much less area when compared to
traditional matrix multiplication and Distributed Arithmetic
(DA) approaches used to perform DCTs on FPGAs.
However, such approaches are impractical for large
transform sizes since the area requirement becomes
prohibitive. For our design, latency is dependent on the size
of the transform, but for 1024 point data, it takes 26us
including full data transfer times into the DCT component
from BlockRAM.

Currently, a two dimensional transform is done by
decomposing the image into rows and columns in software
and then each row is streamed into the FPGA. The next part
of this project to be completed is to copy the entire image to
onboard SRAM and then control the row/column
decomposition in hardware, thereby minimizing data
transfer overhead from host to board.

Acknowledgements
This work was supported in part by CenSSIS, the Center for
Subsurface Sensing and Imaging Systems, under the
Engineering Research Centers Program of the National
Science Foundation (award number EEC-9986821)

References
[1] D. C. Ghiglia and M. D. Pritt. Two-Dimensional Phase

Unwrapping: Theory, Algorithms and Software. Wiley Inter-
Science, 605 Third Avenue, New York, NY, 10158-
0012,1998.

 [2] J. Makhoul. “A fast cosine transform in one and two
dimensions”. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 28(1):27–34, February 1980.

[3] Xilinx Inc. Fast Fourier Transform 3.2. http://www.xilinx.
com/ipcenter/catalog/logicore/docs/xfft.pdf, Last accessed
March 2007.

[4] Sherman Braganza and Miriam Leeser. “The 1D Discrete
Cosine Transform For Large Point Sizes Implemented On
Reconfigurable Hardware”, IEEE conference on Application
specific, Architectures and Processors, 2007.

