

Evaluating Partial Reconfiguration for Embedded FPGA Applications

Ross Hymel Chris Conger Alan D. George Herman Lam

Partial Reconfiguration

- Partial reconfiguration (PR) has existed throughout the history of Xilinx's Virtex FPGA family
- Commercial interest in PR has never materialized due to a lack of supporting software tools and a merciless design flow
- Recent changes however:
 - Release of Virtex-4 and Virtex-5 series with tilebased configuration architectures
 - Lucrative software-defined radio (SDR) market
 new mainstream design flow supported by Xilinx
- However, relatively recent and still restricted release of this new design flow has left a vacuum in research and results exploring PR systems targeting these new devices
- First question that needs to be answered:
 - What is performance impact of this new flow when targeting Virtex-4 FPGAs?

Partial Reconfiguration

- Platform for analysis: Remote Updating
- Is there a way to maintain true field reprogrammability in deployed systems using partial reconfiguration?
 - In-Application Programming for RC
 - Dynamically tailor hardware to application's needs in real-time
 - Prevent embedded FPGAs from becoming expensive, low-performance, power-hungry ASICs
 - Minimize need for external hardware through PR

Various high-performance computing cores used to evaluate system performance

- Radix-4 FFT
- AES
- ARM7 soft-core
- Metrics include:
 - Clock Frequency
 - Bitstream Size
 - Resource Overhead

