
Performance of a Multicore Matrix Multiplication Library
Frank Lauginiger (flauginiger@mc.com), Robert Cooper (rcooper@mc.com), Jonathan Greene (greene@mc.com),

Michael Pepe (mpepe@mc.com), Myra Jean Prelle (mjp@mc.com)
Mercury Computer Systems, Inc., 199 Riverneck Road, Chelmsford, MA 01824

Abstract
Multicore processors promise dramatic improvements in
performance, but their diverse and often unique
architectures are a major inhibitor to software adoption.
Algorithm libraries that operate at the chip level and are
optimized across multiple cores provide the quickest route
by which programmers can port or develop high-
performance software for multicores. This paper reports on
a flexible matrix multiplication library for the Cell
Broadband Engine™ (BE) processor that meets or exceeds
the performance of known matrix multiplication
implementations on the Cell. In addition, the library
operates within a larger framework for programming
multicores that enables programmers to combine library
code with multicore functions they have developed
themselves.

Motivation
Multicore processors have appeared or been announced
from many vendors. Programming has emerged as the
major challenge to the adoption of multicore processors and
the ability of applications to reach the promised
performance gains.

Although parallel programming techniques have been
developed over the last several decades, most programmers
have yet to adopt them. As a consequence, existing
programs and programmers are currently not well
positioned to exploit multicores.

The most promising approach that offers both performance
and ease of adoption is the function offload model. In this
model, the main application thread running on a general-
purpose core calls compute-intensive functions whose
implementations offload work to multiple, possibly
specialized, cores. By offering common algorithm libraries
with optimized multicore implementations, we can bring a
large group of programmers into the multicore realm, and
provide software portability among multicore architectures.

The Cell Broadband Engine Architecture
The Cell BE [1] contains a single general-purpose Power™
architecture core and eight high-performance cores, termed
Synergistic Processing Elements (SPEs). With the chip
running at 3.2 GHz, each SPE has peak performance of
25.6 GFLOPS. The SPE does not have a conventional
hardware cache; instead, each SPE has a 256KB local store
with a bandwidth of 51.2 GB/s. This is the only memory to

which the SPE has load/store access. To access main
memory, the SPE must use DMA commands. The XDR
DRAM main memory provides aggregate bandwidth of
25.6 GB/s.

In addition, the Cell provides very high SPE-to-SPE
bandwidth using the Element Interconnect Bus (EIB). An
SPE can communicate at 25.6 GB/s to any combination of
other SPEs over the EIB. In the aggregate, the EIB provides
204.8 GB/s of bandwidth; thus in theory, every pair of SPEs
could simultaneously communicate at 25.6 GB/s. Note that
the general purpose core, external I/O and XDR memory
also share the EIB. Exploiting explicit SPE-to-SPE
communication is often the key to achieving the best
performance on the Cell.

Problem Specification
For the matrix multiplication: C = A * B, we define the
problem size with three parameters: the number of rows
(nr) and columns (nc) of the result matrix, and the dot
product length (dpl) of the row-by-column dot product that
produces each element of the result matrix (Figure 1).

dpl nc

dpl
nr

nc

nr A B C

Figure 1: Matrix dimensions.

Thus C is of dimension nr rows by nc columns, A is of
dimension nr rows by dpl columns and B is of dimension
dpl rows by nc columns.

The library supports rectangular matrices in sizes with
granularity of 32 rows or columns stored in row-major
format. It also supports optional accumulation (C = C + A *
B) and pre-transposition of either or both input matrices A
and B. Finally, the user can select the number of SPEs (p)
to use in the calculation.

Algorithm Mapping
The library uses different decompositions depending on the
matrix size. Here we describe the algorithm mapping for
matrices for which dpl is between 32 and 1024 elements.

Each SPE computes
nc/p = 64 column
partition of matrix C

Each SPE processes
nc/p = 64 column
partition of matrix B

A [nr=512,dpl=1024] B [dpl=1024,nc=512] X

Each SPE
processes entire
matrix A

C [nr=512,nc=512]

Inner loop multiplies 8 x dpl element tile from A with dpl x 32 tile from B to produce 8 x 32 tile of C

Figure 2: Problem decomposition for multiplying a 512x1024 matrix by a 1024x512 matrix

Each SPE is responsible for producing an nc/p column
partition of the result matrix (Error! Reference source not
found.). To do so, it must read all rows of matrix A and an
nc/p column partition from B. This partitioning makes each
core’s computation independent of all the others. However,
each core will need to access the entire A matrix during the
computation of its segment of the output matrix.

An SPE’s partition of B is further subdivided into strips of
32 columns. For each column, the SPE proceeds to DMA
all rows of matrix A, eight rows at a time from XDR
memory. The inner loop then performs the dot products to
produce an 8 x 32 tile in the output matrix C. For
efficiency, this inner loop is written in highly tuned
assembly language.

The choice of output tile size is critically determined by
many competing tradeoffs including exploiting the full
SIMD width, maximizing DMA size, and ensuring DMA
alignment, all while not exceeding the 256KB local store
size on an SPE.

The key to the performance of this algorithm is the retrieval
of tiles from matrix A. This must be done by all SPEs for
every 8x32 tile of C. If all eight SPEs independently read
tiles, the XDR memory bandwidth will be a bottleneck.

A better option is to have a subset of SPEs each stream
matrix A into its own local store, signal its neighbor(s), and
then have these “neighbor” SPEs stream matrix A in over
the much faster on-chip EIB. This idea is also used in [2].

We experimented with three DMA strategies, described
here for the case of eight SPEs:

1. Even numbered SPEs stream in A from off-chip
memory, signal the odd SPEs when the off-chip
DMA is complete. Odd SPUs then stream in the A
tile from its even neighbor over the EIB.

2. SPEs 0 and 4 pull the A tile in from external
memory, all other SPEs pull from one of these two
SPEs.

3. SPE 0 pulls from external memory; all other SPEs
pull over the EIB from SPE 0.

The goal is to balance the double buffered DMA activity
with the matrix multiplication’s floating-point activity,
which results in a virtual overlap of the two. We measured
the total algorithm time for a 1024x1024 matrix multiply
for each of these options on a 3.2 GHz Cell BE processor as
shown in Table 1.

Table 1: DMA streaming performance

SPEs Which Pull A From XDR GFLOPS
SPEs 0 through 7 159
SPEs 0, 2, 4 and 6 170
SPEs 0 and 4 169
SPE 0 170

The best case represents 83% efficiency compared to the
eight SPE’s collective peak performance of 204.8 GFLOPS.

Using the EIB to transfer tiles of matrix A means that each
core will share a buffer with its neighbors. Therefore
reading and writing to this buffer must be correctly and
efficiently synchronized. This is done via DMA-based

semaphores using the dma_semaphore_[give,take]
routines of Mercury’s MultiCore Framework [3].

Results
Preliminary performance results utilizing eight SPEs on a
3.2 GHz Cell BE processor are reported in Table 2.

Table 2: Matrix multiplication library performance

Matrix Dimensions
nr nc dpl

GFLOPS

Efficiency

512 512 512 149 73%
512 512 1024 162 79%
768 768 768 163 79%
1024 1024 1024 170 83%

These results indicate that the performance increases as the
dot product length gets larger. This is because the assembly
code routine spends more time in the inner loop, making the
overhead in the routine relatively smaller. The overhead is
also a function of the DMA tile dimensions used. This
could be reduced for smaller matrices by dynamically
configuring the DMA tiling dimensions based on the
overall matrix dimensions passed in at execution time.

Increasing the performance for smaller matrix dimensions,
and extending the implementation to arbitrarily large
matrices are the focus of our current development.

Related Work
Table 3 summarizes the performance of two other Cell
matrix multiplication implementations. The Sony-Toshiba-
IBM implementation is taken from the Cell BE Software
Developer’s Kit (SDK) [4]. It is limited to square, power-
of-two sized matrices in block data layout rather than the
row major layout used in our work. We ran the code from
SDK 1.1 on a 3.2 GHz Cell processor with GNU toolchain
3.2, on FedoraCore 5 using 64KB pages. Our
measurements differ from those reported by IBM [5],
perhaps due to different toolchain versions.

Hackenberg’s implementation [6] is limited to square
matrices in size increments of 64, provides both row-major
and block data layout versions, and supports accumulation.

Table 3: Related work performance (GFLOPS)

STI SDK
(block data layout)

Hackenberg
(row major)

Matrix
Dimension

Measured Reported Reported
512 x 512 138 201 70
768 x 768 125
1024 x 1024 167 201 150

While both these implementations report close to peak
performance (200 GFLOPS) on larger matrices, our
implementation achieves higher performance for matrix
sizes on which we have focused.

Library and API Concerns
When developing a library, requirements beyond pure
benchmark performance must be addressed. Because a
given library function performs just part of the user’s
computation, it is important to provide flexible options for
data layout, matrix size, and features such as accumulation.
Without these options, the user’s program may incur a
performance penalty in order to accommodate the
restrictions of the library function. Our implementation
meets these requirements while maintaining high
performance and a small-code footprint on the SPE.

Programming Multicores
An optimized offload library, such as described in this
paper, is only one component of a high-performance
multicore application. To achieve further optimizations,
some custom algorithm work is recommended. For this
reason, our library ensures that shrink-wrapped functions,
such as described in this paper, can be used alongside
explicitly programmed algorithms implemented with
MultiCore Framework [3]. In particular, the task
management, synchronization and resource management
features of MCF are used cooperatively by the library.

Thus an effective development strategy for the Cell is to
begin using the general-purpose Power core exclusively;
replace local library function calls for compute-intensive
operations with calls to an offload library; and, finally, to
identify areas for further improvement that will benefit
from custom algorithm development aided by multicore
programming tools. They work described in this paper
achieves that goal by combining maximum performance
and flexibility in a single library.

References
[1] H. P. Hofstee, “Power Efficient Processor Architecture and The Cell

Processor,” 11th International Symposium on High-Performance
Computer Architecture (HPCA), Feb. 2005.

[2] Y. Steinsaltz, S. Geaghan, M. J. Prelle, B. Bouzas, “Leveraging
Multicomputer Frameworks for Use in Multi-Core Processors,”
Tenth Annual High Performance Embedded Computing Conference
(HPEC). Sep. 21, 2006.

[3] B. Bouzas, R. Cooper, J. Greene, M. Pepe, M. J. Prelle, “MultiCore
Framework: An API for Programming Heterogeneous Multicore
Processors,” First Workshop on Software Tools for Multi-Core
Systems (STMCS), March 26, 2006.
 http://www.isi.edu/~kintali/stmcs06/cooper.pdf

[4] Sony-Toshiba-IBM Design Center, Cell BE Software Developers Kit
(SDK), Version 1.1, Dec. 2006. Available at:
http://www.bsc.es/projects/deepcomputing/linuxoncell/cellsimulator/
sdk1.1/.

[5] T. Chen, R. Raghavan, J. Dale, E. Iwata,
Cell Broadband Engine Architecture and its first implementation.
Nov. 2005.
http://www.ibm.com/developerworks/power/library/pa-cellperf/.

[6] D. Hackenberg, “Performance Measurements on Cell SMP Systems,”
Cell Cluster Meeting in Jülich, May 10, 2007.
http://www.fz-juelich.de/zam/datapool/cell/Performance_Measureme
nts_on_Cell.pdf.

