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Abstract 
Multicore processors promise dramatic improvements in 
performance, but their diverse and often unique 
architectures are a major inhibitor to software adoption. 
Algorithm libraries that operate at the chip level and are 
optimized across multiple cores provide the quickest route 
by which programmers can port or develop high- 
performance software for multicores. This paper reports on 
a flexible matrix multiplication library for the Cell 
Broadband Engine™ (BE) processor that meets or exceeds 
the performance of known matrix multiplication 
implementations on the Cell. In addition, the library 
operates within a larger framework for programming 
multicores that enables programmers to combine library 
code with multicore functions they have developed 
themselves.  

Motivation 
Multicore processors have appeared or been announced 
from many vendors. Programming has emerged as the 
major challenge to the adoption of multicore processors and 
the ability of applications to reach the promised 
performance gains.  

 

Although parallel programming techniques have been 
developed over the last several decades, most programmers 
have yet to adopt them. As a consequence, existing 
programs and programmers are currently not well 
positioned to exploit multicores.  

The most promising approach that offers both performance 
and ease of adoption is the function offload model. In this 
model, the main application thread running on a general- 
purpose core calls compute-intensive functions whose 
implementations offload work to multiple, possibly 
specialized, cores. By offering common algorithm libraries 
with optimized multicore implementations, we can bring a 
large group of programmers into the multicore realm, and 
provide software portability among multicore architectures.  

The Cell Broadband Engine Architecture 
The Cell BE [1] contains a single general-purpose Power™ 
architecture core and eight high-performance cores, termed 
Synergistic Processing Elements (SPEs). With the chip 
running at 3.2 GHz, each SPE has peak performance of 
25.6 GFLOPS. The SPE does not have a conventional 
hardware cache; instead, each SPE has a 256KB local store 
with a bandwidth of 51.2 GB/s. This is the only memory to 
 

 

 

which the SPE has load/store access. To access main 
memory, the SPE must use DMA commands. The XDR 
DRAM main memory provides aggregate bandwidth of 
25.6 GB/s.  

In addition, the Cell provides very high SPE-to-SPE 
bandwidth using the Element Interconnect Bus (EIB). An 
SPE can communicate at 25.6 GB/s to any combination of 
other SPEs over the EIB. In the aggregate, the EIB provides 
204.8 GB/s of bandwidth; thus in theory, every pair of SPEs 
could simultaneously communicate at 25.6 GB/s. Note that 
the general purpose core, external I/O and XDR memory 
also share the EIB. Exploiting explicit SPE-to-SPE 
communication is often the key to achieving the best 
performance on the Cell.  

Problem Specification 
For the matrix multiplication: C = A * B, we define the 
problem size with three parameters: the number of rows 
(nr) and columns (nc) of the result matrix, and the dot 
product length (dpl) of the row-by-column dot product that 
produces each element of the result matrix (Figure 1).  
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Figure 1: Matrix dimensions. 

Thus C is of dimension nr rows by nc columns, A is of 
dimension nr rows by dpl columns and B is of dimension 
dpl rows by nc columns.  

The library supports rectangular matrices in sizes with 
granularity of 32 rows or columns stored in row-major 
format. It also supports optional accumulation (C = C + A * 
B) and pre-transposition of either or both input matrices A 
and B. Finally, the user can select the number of SPEs (p) 
to use in the calculation. 

Algorithm Mapping 
The library uses different decompositions depending on the 
matrix size. Here we describe the algorithm mapping for 
matrices for which dpl is between 32 and 1024 elements. 

 

  



Each SPE computes  
nc/p = 64 column 
partition of matrix C 

Each SPE processes 
nc/p = 64 column 
partition of matrix B 

A [nr=512,dpl=1024]  B [dpl=1024,nc=512] X  

Each SPE 
processes entire 
matrix A 

C [nr=512,nc=512] 

Inner loop multiplies 8 x dpl element tile from A with dpl x 32 tile from B to produce 8 x 32 tile of C

Figure 2: Problem decomposition for multiplying a 512x1024 matrix by a 1024x512 matrix 

Each SPE is responsible for producing an nc/p column 
partition of the result matrix (Error! Reference source not 
found.). To do so, it must read all rows of matrix A and an 
nc/p column partition from B. This partitioning makes each 
core’s computation independent of all the others. However, 
each core will need to access the entire A matrix during the 
computation of its segment of the output matrix. 

An SPE’s partition of B is further subdivided into strips of 
32 columns. For each column, the SPE proceeds to DMA 
all rows of matrix A, eight rows at a time from XDR 
memory. The inner loop then performs the dot products to 
produce an 8 x 32 tile in the output matrix C. For 
efficiency, this inner loop is written in highly tuned 
assembly language.  

The choice of output tile size is critically determined by 
many competing tradeoffs including exploiting the full 
SIMD width, maximizing DMA size, and ensuring DMA 
alignment, all while not exceeding the 256KB local store 
size on an SPE.  

The key to the performance of this algorithm is the retrieval 
of tiles from matrix A. This must be done by all SPEs for 
every 8x32 tile of C. If all eight SPEs independently read 
tiles, the XDR memory bandwidth will be a bottleneck.   

 

A better option is to have a subset of SPEs each stream 
matrix A into its own local store, signal its neighbor(s), and 
then have these “neighbor” SPEs stream matrix A in over 
the much faster on-chip EIB. This idea is also used in [2].  

We experimented with three DMA strategies, described 
here for the case of eight SPEs: 

1. Even numbered SPEs stream in A from off-chip 
memory, signal the odd SPEs when the off-chip 
DMA is complete. Odd SPUs then stream in the A 
tile from its even neighbor over the EIB. 

2. SPEs 0 and 4 pull the A tile in from external 
memory, all other SPEs pull from one of these two 
SPEs. 

3. SPE 0 pulls from external memory; all other SPEs 
pull over the EIB from SPE 0. 

The goal is to balance the double buffered DMA activity 
with the matrix multiplication’s floating-point activity, 
which results in a virtual overlap of the two. We measured 
the total algorithm time for a 1024x1024 matrix multiply 
for each of these options on a 3.2 GHz Cell BE processor as 
shown in Table 1. 

Table 1: DMA streaming performance 

SPEs Which Pull A From XDR GFLOPS 
SPEs 0 through 7  159 
SPEs 0, 2, 4 and 6  170 
SPEs 0 and 4   169 
SPE 0  170 

 

The best case represents 83% efficiency compared to the 
eight SPE’s collective peak performance of 204.8 GFLOPS.  

Using the EIB to transfer tiles of matrix A means that each 
core will share a buffer with its neighbors. Therefore 
reading and writing to this buffer must be correctly and 
efficiently synchronized. This is done via DMA-based 



 

semaphores using the dma_semaphore_[give,take] 
routines of Mercury’s MultiCore Framework [3].  

Results 
Preliminary performance results utilizing eight SPEs on a 
3.2 GHz Cell BE processor are reported in Table 2.  

Table 2: Matrix multiplication library performance 

Matrix Dimensions 
nr nc dpl 

GFLOPS 
               

Efficiency 

512 512 512 149 73% 
512 512 1024 162 79% 
768 768 768 163 79% 
1024 1024 1024 170 83% 

 

These results indicate that the performance increases as the 
dot product length gets larger. This is because the assembly 
code routine spends more time in the inner loop, making the 
overhead in the routine relatively smaller. The overhead is 
also a function of the DMA tile dimensions used. This 
could be reduced for smaller matrices by dynamically 
configuring the DMA tiling dimensions based on the 
overall matrix dimensions passed in at execution time.  

Increasing the performance for smaller matrix dimensions, 
and extending the implementation to arbitrarily large 
matrices are the focus of our current development. 

Related Work 
Table 3 summarizes the performance of two other Cell 
matrix multiplication implementations. The Sony-Toshiba-
IBM  implementation is taken from the Cell BE Software 
Developer’s Kit (SDK) [4]. It is limited to square, power-
of-two sized matrices in block data layout rather than the 
row major layout used in our work. We ran the code from 
SDK 1.1 on a 3.2 GHz Cell processor with GNU toolchain 
3.2,  on FedoraCore 5 using 64KB pages. Our 
measurements differ from those reported by IBM [5], 
perhaps due to different toolchain versions.   

Hackenberg’s implementation [6] is limited to square 
matrices in size increments of 64, provides both row-major 
and block data layout versions, and supports accumulation. 

Table 3: Related work performance (GFLOPS) 

STI SDK  
(block data layout) 

Hackenberg 
(row major) 

Matrix  
Dimension 

Measured  Reported  Reported  
512 x 512 138 201 70 
768 x 768   125 
1024 x 1024 167 201 150 

 
While both these implementations report close to peak 
performance (200 GFLOPS) on larger matrices, our 
implementation achieves higher performance for matrix 
sizes on which we have focused.  

 

Library and API Concerns 
When developing a library, requirements beyond pure 
benchmark performance must be addressed. Because a 
given library function performs just part of the user’s 
computation, it is important to provide flexible options for 
data layout, matrix size, and features such as accumulation. 
Without these options, the user’s program may incur a 
performance penalty in order to accommodate the 
restrictions of the library function. Our implementation 
meets these requirements while maintaining high 
performance and a small-code footprint on the SPE.  

Programming Multicores 
An optimized offload library, such as described in this 
paper, is only one component of a high-performance 
multicore application. To achieve further optimizations, 
some custom algorithm work is recommended. For this 
reason, our library ensures that shrink-wrapped functions, 
such as described in this paper, can be used alongside  
explicitly programmed algorithms implemented with 
MultiCore Framework [3]. In particular, the task 
management, synchronization and resource management 
features of MCF are used cooperatively by the library.  

Thus an effective development strategy for the Cell is to 
begin using the general-purpose Power core exclusively; 
replace local library function calls for compute-intensive 
operations with calls to an offload library; and, finally, to 
identify areas for further improvement that will benefit 
from custom algorithm development aided by multicore 
programming tools. They work described in this paper 
achieves that goal by combining maximum performance 
and flexibility in a single library. 
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