
Using Industry Standards to Exploit
the Advantages and Resolve the

 Challenges of Multicore
Technology

September 19, 2007
Markus Levy, EEMBC and Multicore

Association

•

Multicore Association™
−

Initial engagement began in May 2005

−

Industry-wide participation
−

Current efforts
•

Communications APIs

•

Debug API

•

Embedded Microprocessor Benchmark
Consortium®

(EEMBC)

−

Industry benchmarks since 1997
−

Evaluating current and future MP platforms
•

Uncover MP bottlenecks

•

Compare multiprocessor vs. uni-processor

Enabling the Multicore Ecosystem

What Is Multicore’s

Value?

•Is + < ?

•Is + = ?

•Is + > ?

Answer: It depends on the application

Multicore Issues to Solve
•

Communications, synchronization, resource
management between/among cores

•

Debugging: connectivity, synchronization
•

Distributed power management

•

Concurrent programming
•

OS virtualization

•

Modeling and simulation
•

Load balancing

•

Algorithm partitioning
•

Performance analysis

Perspective on COTS
•

‘Ready-made’

solutions help overcome

some of these challenges

•

Extracting full benefits requires effort

•

COTS = Careful Optimizations To Succeed

Multicore for Multiple Reasons
•

Increase compute density
−

Centralization of distributed processing

−

All cores can run entirely different things; for
example, four machines running in one package

App3

App1 App2

App4

Multicore for Multiple Reasons
•

Functional partitioning
−

While possible with multiprocessors, benefits from proximity
and possible data sharing

−

Core 1 runs security, Core 2 runs routing algorithm, Core 3
enforces policy, etc.

Security Routing

Control QoS

Multicore for Multiple Reasons
•

Asynchronous multiprocessing (AMP)
−

Minimizes overhead and synchronization issues

−

Core 1 runs legacy OS, Core 2 runs RTOS, others do
a variety of processing tasks (i.e. where
applications can be optimized)

Video
Compress

Linux ‘RTOS’

Security

Multicore for Multiple Reasons
•

Parallel pipelining
−

Taking advantage of proximity

−

The performance opportunity….

APPLICATION

Thread1 Thread2 Thread3 Thread4 Threadn

Benchmarking Multicore –
 What’s Important?

•

Scalability where contexts exceed resources
•

Single versus multiprocessor

•

Memory and I/O bandwidth
•

Inter-core communications

•

OS scheduling support
•

Efficiency of synchronization

•

System-level functionality

Bird’s Eye View to Multicore
Performance Analysis

•

Shared Memory
−

Semantics of a thread-based API

−

Supporting coherency
−

Applicable to MPC8641D, Intel x86

•

Message Based
−

Heterogeneous MP solutions lack common
programming paradigm

−

Distributed memory architectures
−

Applicable to i.MX

devices, many others

•

Scenario Driven
−

Black Box Approach

−

Performance based on real implementations
−

Define methodology, inputs, expected outputs

Phase 1 Methodology for
Benchmarking Multicore

•

Software assumes homogeneity across
processing elements

•

Scalability of general purpose processing, as
opposed to accelerator offloading

•

Contexts
−

Standard technique to express concurrency

−

Each context has symmetric memory visibility
•

Abstraction
−

Test harness abstracts the hardware into basic
software threading model

•

EEMBC™

has patent-pending on methodology
and implementation

Multicore Benchmarking Primer

Multicore Performance Analysis is Multi-Faceted Problem
More Cores ≠

More Performance
A Major Hardware Architecture and Programming Issue

Workloads, Work Items, Concurrency

•

Workload can

contain 1
or more work items,
executed <N> times

•

Can execute up to <N>
work items concurrently
−

Performance limited by
OS scheduling, # of cores,
memory bandwidth

•

Similar to spec-rate Workload

Work Item
A0

* N

Presenter
Presentation Notes
A workload can contain only one item, that needs to execute <N> times.
Similar to the spec-rate and other current approaches, a throughput measure that does not give a lot of information.

Avoid Oversubscription
Repeats=1

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64

Num concurrent items

Sp
ee

du
p

aifftr_template

aif irf_template

aiiff t_template

autcor_template

bitmnp_template

canrdr_template

conven_template

fft_template

iirf lt_template

pntrch_template

puw mod_template

rspeed_template

tblook_template

viterb_template

Linear speedup until reaching 16 concurrent items = number of cores
Effects vary based on algorithm and platform

Workloads Can Contain Multiple
Contexts

•

Split Work Item into
multiple contexts

•

Increase parallelism
within algorithms

•

Always improves
performance? Workload

Work Item
A0

* N

= context

Presenter
Presentation Notes
A workload can contain only one item, that needs to execute <N> times.
Similar to the spec-rate and other current approaches, a throughput measure that does not give a lot of information.

Synchronization Overhead and
Parallelization Side Effects

•

template2: 1
instance of
rgbhpg

(rate)

•

template4: 1
instance of
rgbhpg

dual

context
•

template6: 1
instance of
rgbhpg

quad

context

Repeats=100, Speedup by num contexts used

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 12

template2
template4
template6

Splitting job in 2 and using 6 concurrent items (total of 12 software contexts) is more efficient than
using 12 concurrent items or splitting in 4 and using 3 concurrent items

Workload

Increasing Workload Complexity
and Realism

•

Workload can contain a mixture of items
•

Example
−

Item A applied to 2 different datasets

−

Item B explicitly using 4 execution contexts

Work Item
A1

Work Item
A0

Work Item
B0

Presenter
Presentation Notes
A workload can contain several items that share system resources, multiple algorithms
and items that can take advantage of multiple contexts.
Example:
Item A is picture processing. The same algorithm is applied to 2 different datasets.
Item B is a benchmark that simulates network traffic, explicitly using 4 execution contexts
This workload can signify loading of html page with 2 images that need to be displayed. Processing of the images is simulated. Multiple iterations of the workload can imitate refresh or a new page.

Cache Effects Hit Early
•

Combine filter items
−

1 instance of rgbyiq

 using one context
−

1 instance of rgbhpg

 using one context
−

2 instances of rgbhpg

 using 2 contexts each
•

RGB to HPG
conversion, splitting
the image processing
among 2 contexts

Repeats=1

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64

Max out at 13x

Contexts

Oversubscribed

Break in linearity

Memory Limitations
•

Test workload for H.264 encoder

•

2 contexts on each stream
•

6 streams
•

2 instances for each itemx264 speedup by number of concurrent streams

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64

Number of items in parallel

Sp
ee

du
p

NOTE: Memory limited after 4 items in parallel

Number of software
contexts used is double
the number of
concurrent items (2
contexts per stream).
Still, overall benefit
over single core case is
9x rather then 16x on a
16 core system.

What Does This Picture Have in
Common With Multicore?

‘Rotate’

Benchmark Stresses
Multicore in Many Ways
•

A few points describing this benchmark.
−

Rotate greyscale

picture 90 deg counter clock-wise.

−

Data shown is specifically for a 4 M-Pixel picture.
•

Benchmark parameters allow different slice sizes,
concurrent items, and number of workers
−

Workers = # of software contexts working on rotating a
single picture concurrently

−

Items = # of pictures to process
−

Slice size = # of lines in a horizontal slice of the photo
for each worker to process each time

Note: When total # SW Contexts <= # HW contexts, there
is no difference.

Balance Data Usage and Synchronization
Slice=1 (high sync granularity)

Different lines indicate number of concurrent items

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of workers per item (decomposition level)

Ite
ra

tio
ns

/s
ec

[1]
[2]
[4]
[8]
[16]

Note the sharp drop in performance as number of workers climb
due to sync overhead.

Also note that with 2 items running concurrently, each with 4 workers processing the image,
achieves the highest score on this platform

Lots of Data Slams Cache
Slice=64 (medium sync granularity)

Different lines indicate number of concurrent items

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of workers per item (decomposition level)

Ite
ra

tio
ns

/S
ec

[1]
[2]
[4]
[8]
[16]
[64]

Highest performance point for this
level of granularity is achieved by
running one item, with 5 workers
processing the image.

Although
slice size of
64 means
less
synchronizati

on required,
it also means
more impact
on cache.

Critical to Optimize for
Scheduling

Decomposition, Workers=1
Different lines indicate slice size, affecting sync granularity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

[1] [2] [4] [8] [16] [64]

Number of concurrent items

Ite
ra

tio
ns

/s
ec

{1}
{2}
{4}
{16}
{64}

With only one worker, sync granularity is
irrelevant, and the number of items
running concurrently manifests
performance speedup, until the point
where system and scheduling combine
to drop performance sharply as
concurrent items compete for machine
resources.

Exposing Memory Bottlenecks
Decomposition, Workers=8

Different lines indicate slice size, affecting sync granularity

0

0.5

1

1.5

2

2.5

3

[1] [2] [4] [8] [16] [64]

Number of concurrent items

Ite
ra

tio
ns

/s
ec

{1}
{2}
{4}
{16}
{64}

With 8 workers processing the
image, the granularity of
synchronization is a major factor
determining performance.

Interesting to note that slice = 4 is
optimal.

Slice of 2, 4,16
closest in
performance.

Less is More
Concurrent Items=1

Different lines indicate slice size, affecting sync granularity

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of workers (Decomposition level)

Ite
ra

tio
ns

/s
ec

{1}
{2}
{4}
{16}
{64}

With only one instance of the
kernel to process the data, a
slice size of 4 is optimal.

The Effects of Rotating One Item

More is Less
Concurrent Items=16

Different lines indicate slice size, affecting sync granularity

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of workers (Decomposition level)

Ite
ra

tio
ns

/s
ec

{1}
{2}
{4}
{16}
{64}

With 16 concurrent items, maximum
performance is achieved with slice size of 16,
but even that maximum is less then 0.6, while
the best configuration for the system gives
over 2.6 iterations/sec

Communication API (MCAPI)
Target Domain

•

Multiple cores on a chip and multiple chips on
a board
−

Closely distributed and/or tightly-coupled systems

•

Heterogeneous and homogeneous systems
−

Cores, interconnects, memory architectures, OSes

•

Scalable: 2 –

1000’s of cores
−

Assumes the ‘cost’

of messaging/routing <

computation of a node

CAPI Features and
Performance Considerations

•

Very small runtime footprint
•

Low-level messaging API

•

Low-level streaming API
•

High efficiency

•

Seeking reviewers for pre-release version

Courtesy of PolyCore Software

Application

architecture Interconnect architecture

Further abstraction (OS/middleware)

Application

Interconnect topology

HW
AcceleratorsCPU/DSP

CAPICAPI

AcceleratorsCPU/DSP AcceleratorsCPU/DSP

Further abstraction (OS/middleware)

Application

CAPI

Benchmark Implementation on
a Message-Based Platform

•

Uses CAPI as underlying infrastructure and test
harness
−

Portable implementation, even with a
heterogeneous platform

•

Divide applications and/or algorithms into
smallest possible functional modules
−

Each module is compiled separately

EEMBC® Benchmark

architecture Interconnect architecture

Further abstraction (OS/middleware)

Interconnect topology

HW
AcceleratorsCPU/DSP

CAPICAPI

AcceleratorsCPU/DSP AcceleratorsCPU/DSP

Further abstraction (OS/middleware)

CAPI

EEMBC Benchmark EEMBC Benchmark

Multicore Opportunities and Challenges

•

Multicore technology is inevitable

•

It’s time to begin implementing

•

The Multicore Association™

will help ease the
transition

•

EEMBC® will help analyze the performance
benefits
−

Patent pending on new multicore benchmark
technique

	Using Industry Standards to Exploit the Advantages and Resolve the�Challenges of Multicore Technology
	Enabling the Multicore Ecosystem
	What Is Multicore’s Value?
	Multicore Issues to Solve
	Perspective on COTS
	Multicore for Multiple Reasons
	Multicore for Multiple Reasons
	Multicore for Multiple Reasons
	Multicore for Multiple Reasons
	Benchmarking Multicore – What’s Important?
	Bird’s Eye View to Multicore Performance Analysis
	Phase 1 Methodology for Benchmarking Multicore
	Multicore Benchmarking Primer
	Workloads, Work Items, Concurrency
	Avoid Oversubscription
	Workloads Can Contain Multiple Contexts
	Synchronization Overhead and Parallelization Side Effects
	Increasing Workload Complexity and Realism
	Cache Effects Hit Early
	Memory Limitations
	What Does This Picture Have in Common With Multicore?
	‘Rotate’ Benchmark Stresses Multicore in Many Ways
	Balance Data Usage and Synchronization
	Lots of Data Slams Cache
	Critical to Optimize for Scheduling
	Exposing Memory Bottlenecks
	Less is More
	More is Less
	Communication API (MCAPI) Target Domain
	CAPI Features and Performance Considerations
	Benchmark Implementation on a Message-Based Platform
	Multicore Opportunities and Challenges

