

HPC Technology Trends High Performance Embedded Computing Conference

September 18, 2007

David S Scott, Ph.D. Petascale Product Line Architect Digital Enterprise Group

Risk Factors

Today's presentations contain forward-looking statements. All statements made that are not historical facts are subject to a number of risks and uncertainties, and actual results may differ materially. Please refer to our most recent Earnings Release and our most recent Form 10-Q or 10-K filing available on our website for more information on the risk factors that could cause actual results to differ.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations (http://www.intel.com/performance/resources/limits.htm).

Rev. 7/19/06

Silicon Future

Yesterday, Today and Tomorrow in HPC

ENIAC 20 <u>Numbe</u>rs in Main Memory CDC 6600 – First successful Supercomputer 9MFlops

1965 - 1977

~2008 Beyond

ASCI Red (word fastest on top500 till 2000) First Teraflop Computer, 9298 Intel Pentium[®] II Xeon Processors

Intel ENDÉAVOR 464 Intel® Xeon® Processors 5100 series, 6.85 Teraflop MP Linpack, #68 on top500

Yesterday's Supercomputing is Today's Personal Computing

Cell-base community Simulatio

PetaScale Platforms

Intel Design & Process Cadence

All dates, product descriptions, availability and plans are forecasts and subject to change without notice.

Multi and Many Core

- Multi-core is the current progression of multiple cores on a processor die
- Many core is a discontinuity of putting many simpler cores on a die.
- Jim Held will be talking about Intel's research in this area tomorrow.

Increasing I/O Signaling Rate to Fill the Gap

Source: Intel

Increasing Memory Bandwidth to Keep Pace

Power and Cooling Cost Today

DATACENTER ENERGY LABEL"

Assume: 9MW system power, 90% power delivery efficiency, cooling Co-efficiency of Performance (COP)=1.5

Managing Power and Cooling Efficiency

Silicon: Moore's law, Strained silicon, Transistor leakage control techniques, Clock gating

> Processor: Policy-based power allocation Multi-threaded cores

System Power Delivery: Fine grain power management, Ultra fine grain power management

Facilities: Air cooling and liquid cooling options Vertical integration of cooling solutions

Power Management: From Transistors to Facilities

DELIVERYINEFFICIENCY

CUMULATIVE DATACENTER POWER DELIVERY EFFICIENCY

Source: Intel

CONVERSION OVERKILL

CONVENTIONAL DATACENTER AC POWER DISTRIBUTION

SIMPLIFIED DISTRIBUTION

HIGH VOLTAGE DC POWER DISTRIBUTION

HIGH VOLTAGE DC DATACENTER PROTOTYPE

EFFICIENCY REALIZED

Source: Intel

Reliability Challenge Billions of Transistors

Soft Error FIT/Chip (Logic & Mem)

Soft Errors or Single Event Upsets (SEU) are caused by charge collection following an energetic particle strike. *FIT/bit (mem cell)*: expected to be roughly constant

 Moore's law: increasing the bit count exponentially: 2x every 2 years

An exponential growth in FIT/chip

Drift

Depletion Region

Soft Error: One of Many Challenges

Diffusion

Ion Path

Innovation with Acceleration

Intel® Architecture with Multi Core • General purpose Scalability • Economies of Scale

Intel® Architecture with Accelerators

Special Purpose Performance

- Geneseo PCIe extensions
- OuickAssist Software & Tools

Energy Efficient Performance with Multi-threaded Cores & Accelerators

Memory

Hub

l/O hub

PCI

System bottleneck in supporting Accelerators

- Interface Performance
 - Reduce hardware overhead
 - Lower latency for small packets
 - Higher bandwidth for large packets

Programming model and tools

- Ease of programming
- Reduce software overhead; Commands and data movement
- Status and synchronization
- Configuration and error handling
- Virtualization and power management
- Scheduling & Memory mgmt.
 - Memory Buffer allocation policy
 - Linear addressing

Software & Platform latencies are 100X the physical IO latency for most accelerators.

Questions?