
Approved for public release, distribution unlimited

Preliminary Study toward
Intelligent Run-time

Resource Management Techniques
for Large Tiled Multi-Core Architectures

Dong-In Kang, Jinwoo Suh,
Janice O. McMahon, and Stephen P. Crago

University of Southern California
Information Sciences Institute

September 18, 2007
This effort was sponsored by Defense Advanced Research Projects Agency (DARPA) through the Dept. of Interior National Business
Center (NBC), under grant number NBCH1050022. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing the official policies or endorsement, either expressed or
implied, of the Defense Advanced Research Projects Agency (DARPA), Dept. of Interior, NBC, or the U.S. Government.

Approved for public release, distribution unlimited 2

Outline

Introduction

Simulation Model

Applications and Results
Resource Fragmentation
Mapping Performance

Problem Space and Future Work

Conclusion

Approved for public release, distribution unlimited 3

Motivation

Rising processor density, multi-core architecture
MIT Raw 4x4
8-core 64-thread SUN Niagara 2 processor
Tilera TILE64 processor
Intel 80-core Teraflops prototype processor
In the future: 32x32 or larger

Dynamic applications
With large-scale architectures, multiple applications will share tile
array; need to arbitrate resources between applications
Requirements are unpredictable and changing in response to
environment
Need for dynamic mapping, allocation/deallocation, resource
management

Need for more intelligent run-time systems
Better resource allocation for efficiency
New system capabilities to alleviate programming burden
Dynamic reactivity for changing scenarios
Complex optimization space

Approved for public release, distribution unlimited 4

Research Goal: Intelligent Run-Time
Resource Allocation

Application of knowledge-based and learning techniques to
the problem of dynamic resource allocation in a tiled
architecture

Planning and optimization of resource usage given application
constraints
Knowledge derived from dynamic performance profiling, modeling,
and prediction
Run-time learning of resource allocation trade-offs

Proof-of-concept demonstration: simulation of application
workload to compare performance of manual and automatic
resource allocations

Define representative application
Develop scalable simulation
Define resource mapping problem and apply intelligent technique

Current work: definition of problem, construction of
simulator, and preliminary study to quantify performance
effects

Approved for public release, distribution unlimited 5

System Framework

Machine-level
Resource Allocation

Application-level
Task Composition

Knowledge-
base

Application
Environment

Generate tasks
that meet
application
goals in current
environment

Task graph ,
performance
requirements

Performance
monitoring/
knowledge
buildup

Processing
Environment

Task
assignment
to maximize
machine
performance

Profiling

Prototype experiments in
machine-level resource
allocation

Prototype experiments in
machine-level resource
allocation

Simulation
environment

Research
focus

Approved for public release, distribution unlimited 6

Outline

Introduction

Simulation Model

Applications and Results
Resource Fragmentation
Mapping Performance

Problem Space and Future Work

Conclusion

Approved for public release, distribution unlimited 7

ISI Simulator for Multi-Core Architecture

Event-driven simulator
In SystemC
Based on ARMn multiprocessor simulator from Princeton Univ.

Generic processor module
Proportional share resource scheduler
Memory latency is implicit in computation time
Parameterized specification: CPU speed, CPU-network interface speed, etc.

Network
One network, 2-D mesh
5x5 crossbar switch
Message passing model
Store and forward routing
Parameterized specification: speed, buffer size, packet overhead, etc.

PE PESwitch Switch

Tile Tile

Profile info:
Per link:
Data amount
Blocking time

Per packet:
Latency
Blocking time

Per task:
Event log
Blocking time

Per CPU:
Utilization

Approved for public release, distribution unlimited 8

Simulation Approach

A B

C F
E

GD

H
I

Application Task Graph

Compute <Steps>
Send <Amt, Dest, Tag>
Recv <Amt, Src, Tag>

A A B B
C D D E
F F F G
G H I I

Tile Allocation: 2D Mesh

Simulation uses data flow information and
network characteristics (topology, latency,
overhead, etc.) to produce performance
results for a particular task mapping.

Simulation uses data flow information and
network characteristics (topology, latency,
overhead, etc.) to produce performance
results for a particular task mapping.

Each task has a
script that defines
computation steps,
message sends and
receives

Approved for public release, distribution unlimited 9

Dynamic Behavior

t1 t2 t3 t4

App A App B App C App D free
Optimized
Mapping

t5Time

Two performance effects over time:
Resource fragmentation: incremental
resource allocation decreases locality
Dynamic application requirements and
resource availability

Two performance effects over time:
Resource fragmentation: incremental
resource allocation decreases locality
Dynamic application requirements and
resource availability

Approved for public release, distribution unlimited 10

Outline

Introduction

Simulation Model

Applications and Results
Resource Fragmentation
Mapping Performance

Problem Space and Future Work

Conclusion

Approved for public release, distribution unlimited 11

Example Application: Radar Resource
Management using IRT

Drive IRT
spreadsheets and
morphing scenarios
with parameters
from a notional
radar resource
manager

GMTI Task Graph
input to simulator

FAT requirements
modeled with
statistically varying
processor loads,
message traffic

Subband
Analysis

Time Delay &
Equalization
146MFLOPs

Time Delay
&

Equalization

P = C = T =
(Nsrg xNch xNpri) Adaptive

Beamforming
42MFLOPs

Adaptive
Beamforming

P = C = T =
(Nch xNsrg xNpri)

Pulse
Compression
112MFLOPs

Pulse
Compression

P = C = T =
(Nbm xNsrg xNpri)

Doppler
Filtering

32.4MFLOPs

Doppler
Filtering

P = C = T =
(Nbm xNsrg xNpri)

STAP
47MFLOPs

STAP

Subband
Synthesis

Subband
Synthesis

Data
Combination

Target
Detection

4.7MFLOPs

3D
Grouping

Parameter
Estimation

189MFLOPs

P = C = T =
(Ndop x (Nbm *Nstage)xNsrg)

P = Ncnb x Nsrg x Ndop
C = T =

(Ncnb x Nsrg x Ndop)
P = C = T =

(Ncnb x Nsrg x Ndop)
P = C = T =

(Ncnb x Nrg x Ndop)

Data Independent

Nsub

Approved for public release, distribution unlimited 12

Resource Fragmentation

*************...................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

.........................

********* * .** *** *****.*****
*************** *** ***.** *****
.* * ** * * ******** *
.*.** ***.*** .**.******.*

***** ** **** **** ** *** *
*** * *** ** * * * * * ********
** *** ** **** ** * ** ** *** *
.****** *****. ** ***** **.**

** *** * .*** * ********
.* **** **********. ***** * ***
.* * ****** ****** .*** **. *

*.** .** **** ** * **** *****
******** * *********** *** *

*** ***** *** *** ** **** * **
* ******* ****** **** ** ******
**** **** ****** * * * * **
* * * ** ***.....

..
..

..
..
......
.....
.......
.
.
..

.

.......
......

....

...*.***....*.***.*...*..*.*..*.

..*...*.*.. * * **.* * *
** ***** *** * ** ** *

*** . * . ** ** . * * ****.*
* * *** * *** * **** ** **
** ** *** * ** * ** * ***

* ** * * * * ** *** ** ***
. ** ** * *.*** **** * *** .*

** . * * ***
.*** ** * ***. * * **

.* * * ******* .** **
. ***.***** * * * ** *****
* ** * *** ** * ** *** ** *

**** * * * * * * *
** * * * ** * **** ***

* * * * *** ** *** * *
** **** * ***

.*...*....
*.. ***.*.... .

.

...
..

.....

..
.

.
..

.

.....
.....

...

.*...**....**.*.*.*.*.***...*.*.

......*.*.**..****.***....**..**
****.*..***.****.****......*..*.
....*.*...*.*.*..*.**.**.**.
.....**.***.****.*.*.*******
..**....**..**..***..***.*..*.**
...*.*.*...*.*.**..***.**.
......*.***....*.*.*....**..**
.*****..*.***....*.***.*....*..*
...**.*.....***.*****.**.*.....*
..****.***...*.*.*.*.*.******.*.
.....****...*..*.....**..*....
...*...*....*..*..**.**.....
****....**....**..***.**..*.****
.*......*.*.**.*..*..***..
.....**.*....*.*.........**.**.*

.*.****...**..*.*.*.... * * *.
.* .* * *. .*. * * ..*
* .*** *.* .****. ... ***..* **
*..*** **. .******.*. . * * . .
* . ****..*.. .**. ** * . *.
*. ******.* .*...* .* * ** *
.... . ..* . .* . *.*. .

. **. **. *..*.* ...** *.* .
* . * *. *..* . *. * ..*..*.*

.. . . .*. *..... ...**...*.
. ... * * * .*.* . **. * * *..
.. ..* ..*.*.. * .** .
* *. *. ***.*. **
.... *..*....*. ..*.*...*
..*.. .*.* *. **. *.** *
** * ** ** * * ****** *

0: GMTI[525], FAT[460], FREE[39]
* GMTI asks to have [525] tiles

Allocate GMTI [525] more nodes
* FAT asks to have [460] tiles

Allocate FAT [460] more nodes 8: GMTI[367], FAT[361], FREE[296]
* GMTI asks to have [367] tiles
Free GMTI [123] nodes

16: GMTI[251], FAT[355], FREE[418]'
* FAT asks to have [355] tiles

Allocate FAT [7] more tiles

25: GMTI[419], FAT[446], FREE[159]
* GMTI asks to have [419] tiles
Free GMTI [400] tiles

* FAT asks to have [446] tiles
Allocate FAT [241] more tiles

Assumptions:
- GMTI: mode change
- FAT: constrained in computation

requirement changes in ±10%
- Linear tile assignment
- GMTI, FAT can change independently
- GMTI has higher priority than FAT

Fragmentation happens quickly!Fragmentation happens quickly!

‘*’: GMTI, ‘.’: FAT, ‘ ‘: FREE

Approved for public release, distribution unlimited 13

Outline

Introduction

Simulation Model

Applications and Results
Resource Fragmentation
Mapping Performance

Problem Space and Future Work

Conclusion

Approved for public release, distribution unlimited 14

Example: GMTI Application Mapping

Task Graph (GMTI)
Subband
Analysis

Time Delay &
Equalization
146MFLOPs

Adaptive
Beamforming

42MFLOPs

Pulse
Compression
112MFLOPs

Doppler
Filtering

32.4MFLOPs

STAP
47MFLOPs

Subband
Synthesis

Data
Combination

Time Delay &
Equalization
146MFLOPs

Adaptive
Beamforming

42MFLOPs

Pulse
Compression
112MFLOPs

Doppler
Filtering

32.4MFLOPs

STAP
47MFLOPs

Subband
Synthesis

Subband
Analysis

(a) Clustered (b) Fragmented

Interference
from other application
is modeled by random
traffic generator

Parameter Values

GMTI resource
requirements 128 tiles 868 tiles

Free tiles Fragmented Clustered

Mapping technique Random Heuristic

Task frequency 1 KHz 2 KHz

* Total 16 cases

Approved for public release, distribution unlimited 15

128-Tile 1 KHz GMTI Performance

For high network loads, mappings on fragmented resources cause network load
imbalance and longer latencies. In some cases, traffic causes network overload.
For high network loads, mappings on fragmented resources cause network load
imbalance and longer latencies. In some cases, traffic causes network overload.

Approved for public release, distribution unlimited 16

128-Tile 2 KHz GMTI Performance

With higher task frequencies (performance), latency is sensitive to both
resource allocation method and fragmentation of the resources.
With higher task frequencies (performance), latency is sensitive to both
resource allocation method and fragmentation of the resources.

Approved for public release, distribution unlimited 17

868-Tile 1 KHz GMTI Performance

With higher GMTI allocation, latency is:
- less sensitive to background network load
- more sensitive to task mapping algorithm than fragmentation of the resources

With higher GMTI allocation, latency is:
- less sensitive to background network load
- more sensitive to task mapping algorithm than fragmentation of the resources

Approved for public release, distribution unlimited 18

868-Tile 2 KHz GMTI Performance

With higher GMTI allocation and task frequencies (performance), random
mapping does not work at all.
With higher GMTI allocation and task frequencies (performance), random
mapping does not work at all.

Approved for public release, distribution unlimited 19

Outline

Introduction

Simulation Model

Applications and Results
Resource Fragmentation
Mapping Performance

Problem Space and Future Work

Conclusion

Approved for public release, distribution unlimited 20

Network-Oriented Problem Space

Clustered free tiles /
Communication patterns are
known

- Near optimal mapping is
possible
- Adaptability to run-time
dynamic behavior

Clustered free tiles /
communication patterns are NOT known

- Initially random mapping
(possibly quite bad performance)
- Learning the communication pattern
- Remapping for performance improvement

Fragmented free tiles / communication
patterns are known

- Initially reasonable mapping (still
possibly bad performance)
- Task migration for enhanced
performance and defragmentation

Fragmented free tiles /
communication patterns are
NOT known ahead

- Initially random mapping
(worst performance)
- Learning the communication
pattern
- Task migration for enhanced
performance and
defragmentation

Task Migration/
Defragmentation

Learn
communication

patterns

Learn
communication

patterns
Task Migration/

Defragmentation

More intelligence leads to better resource management

Approved for public release, distribution unlimited 21

Future Work

Run-time profiling technique
Low overhead
Detecting network load imbalance
Detecting communication patterns, dependencies
Detecting processor load imbalance

Gradual morphing technique
Intelligent partial remapping of the application

Hot spot removal, load balancing
Adaptive changes of parallelism of the application

Adaptive to the status of free resources

Run-time support for gradual morphing
Task migration
Dynamic changes of parallelism of the application

Dynamic adaptation of code
Expression of dynamic changes of code at run-time
Dynamic code generation

Approved for public release, distribution unlimited 22

Conclusion

Large multi-tiled architectures will require intelligent
run-time systems for resource allocation and dynamic
mapping

Future applications will be complex and will need to respond to
unexpected events
Future, large-scale multi-tiled architectures will require application
sharing and arbitration of resources

In this research, we have explored the effect of dynamic
application variations on multi-tiled performance

Dynamic IRT with representative mode changes and load variations
causes resource fragmentation over time
Application mappings must be done carefully in order to provide robust
behavior

Future work will involve the application of knowledge-
based and machine learning algorithms to the profile-
based dynamic resource management

	Preliminary Study toward �Intelligent Run-time �Resource Management Techniques �for Large Tiled Multi-Core Architectures�
	Outline
	Motivation
	Research Goal: Intelligent Run-Time Resource Allocation
	System Framework
	Outline
	ISI Simulator for Multi-Core Architecture
	Simulation Approach
	Dynamic Behavior
	Outline
	Example Application: Radar Resource Management using IRT
	Resource Fragmentation
	Outline
	Example: GMTI Application Mapping
	128-Tile 1 KHz GMTI Performance
	128-Tile 2 KHz GMTI Performance
	868-Tile 1 KHz GMTI Performance
	868-Tile 2 KHz GMTI Performance
	Outline
	Network-Oriented Problem Space
	Future Work
	Conclusion

