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Motivation

Rising processor density, multi-core architecture
MIT Raw 4x4
8-core 64-thread SUN Niagara 2 processor
Tilera TILE64 processor
Intel 80-core Teraflops prototype processor
In the future: 32x32 or larger

Dynamic applications
With large-scale architectures, multiple applications will share tile 
array; need to arbitrate resources between applications
Requirements are unpredictable and changing in response to 
environment
Need for dynamic mapping, allocation/deallocation, resource 
management

Need for more intelligent run-time systems
Better resource allocation for efficiency
New system capabilities to alleviate programming burden
Dynamic reactivity for changing scenarios
Complex optimization space
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Research Goal: Intelligent Run-Time 
Resource Allocation

Application of knowledge-based and learning techniques to 
the problem of dynamic resource allocation in a tiled 
architecture

Planning and optimization of resource usage given application 
constraints
Knowledge derived from dynamic performance profiling, modeling, 
and prediction
Run-time learning of resource allocation trade-offs

Proof-of-concept demonstration: simulation of application 
workload to compare performance of manual and automatic 
resource allocations

Define representative application
Develop scalable simulation
Define resource mapping problem and apply intelligent technique

Current work: definition of problem, construction of 
simulator, and preliminary study to quantify performance 
effects
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System Framework

Machine-level 
Resource Allocation

Application-level 
Task Composition

Knowledge- 
base

Application 
Environment

Generate tasks 
that meet 
application 
goals in current 
environment

Task graph , 
performance 
requirements

Performance 
monitoring/ 
knowledge 
buildup

Processing
Environment

Task 
assignment 
to maximize
machine
performance

Profiling

Prototype experiments in 
machine-level resource 
allocation 

Prototype experiments in 
machine-level resource 
allocation

Simulation 
environment

Research 
focus
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ISI Simulator for Multi-Core Architecture

Event-driven simulator
In SystemC
Based on ARMn multiprocessor simulator from Princeton Univ.

Generic processor module
Proportional share resource scheduler
Memory latency is implicit in computation time
Parameterized specification: CPU speed, CPU-network interface speed, etc.

Network
One network, 2-D mesh
5x5 crossbar switch
Message passing model
Store and forward routing
Parameterized specification: speed, buffer size, packet overhead, etc.

PE PESwitch Switch

Tile Tile

Profile info:
Per link:
Data amount
Blocking time

Per packet:
Latency
Blocking time

Per task:
Event log
Blocking time

Per CPU:
Utilization
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Simulation Approach

A B

C F
E

GD

H
I

Application Task Graph

Compute <Steps>
Send <Amt, Dest, Tag>
Recv <Amt, Src, Tag>

A A B B
C D D E
F F F G
G H I I

Tile Allocation: 2D Mesh

Simulation uses data flow information and 
network characteristics (topology, latency, 
overhead, etc.) to produce performance 
results for a particular task mapping. 

Simulation uses data flow information and 
network characteristics (topology, latency, 
overhead, etc.) to produce performance 
results for a particular task mapping.

Each task has a 
script that defines 
computation steps, 
message sends and 
receives
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Dynamic Behavior

t1 t2 t3 t4

App A App B App C App D free
Optimized
Mapping

t5Time

Two performance effects over time:
Resource fragmentation: incremental 
resource allocation decreases locality
Dynamic application requirements and 
resource availability

Two performance effects over time:
Resource fragmentation: incremental 
resource allocation decreases locality
Dynamic application requirements and 
resource availability
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Example Application: Radar Resource 
Management using IRT

Drive IRT 
spreadsheets and 
morphing scenarios 
with parameters 
from a notional 
radar resource 
manager

GMTI Task Graph 
input to simulator

FAT requirements 
modeled with 
statistically varying 
processor loads, 
message traffic

Subband
Analysis

Time Delay & 
Equalization
146MFLOPs

Time Delay
& 

Equalization

P = C = T = 
(Nsrg xNch xNpri ) Adaptive

Beamforming
42MFLOPs

Adaptive
Beamforming

P =  C = T = 
(Nch xNsrg xNpri )

Pulse 
Compression
112MFLOPs

Pulse 
Compression

P =  C = T = 
(Nbm xNsrg xNpri )

Doppler
Filtering

32.4MFLOPs

Doppler
Filtering

P =  C = T = 
(Nbm xNsrg xNpri )

STAP
47MFLOPs

STAP

Subband
Synthesis

Subband
Synthesis

Data 
Combination

Target
Detection

4.7MFLOPs

3D
Grouping

Parameter
Estimation

189MFLOPs

P =  C = T = 
(Ndop x (Nbm *Nstage )xNsrg )

P =  Ncnb x Nsrg x Ndop
C = T = 

(Ncnb x Nsrg x Ndop )
P =  C = T = 

(Ncnb x Nsrg x Ndop )
P =  C = T = 

(Ncnb x Nrg x Ndop )

Data Independent

Nsub
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Resource Fragmentation
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0: GMTI[525], FAT[460], FREE[39]
* GMTI asks to have  [525] tiles

Allocate GMTI [525] more nodes
* FAT asks to have [460] tiles

Allocate FAT [460] more nodes 8: GMTI[367], FAT[361], FREE[296]
* GMTI asks to have  [367] tiles
Free GMTI [123] nodes

16: GMTI[251], FAT[355], FREE[418]'
* FAT asks to have [355] tiles

Allocate FAT [7] more tiles

25: GMTI[419], FAT[446], FREE[159]
* GMTI asks to have  [419] tiles
Free GMTI [400] tiles

* FAT asks to have [446] tiles
Allocate FAT [241] more tiles

Assumptions:
- GMTI: mode change
- FAT: constrained in computation   

requirement changes in ±10%
- Linear tile assignment
- GMTI, FAT can change independently
- GMTI has higher priority than FAT

Fragmentation happens quickly!Fragmentation happens quickly!

‘*’: GMTI,   ‘.’: FAT, ‘ ‘: FREE



Approved for public release, distribution unlimited 13

Outline

Introduction

Simulation Model

Applications and Results
Resource Fragmentation
Mapping Performance

Problem Space and Future Work

Conclusion



Approved for public release, distribution unlimited 14

Example: GMTI Application Mapping

Task Graph (GMTI)
Subband
Analysis

Time Delay & 
Equalization
146MFLOPs

Adaptive
Beamforming

42MFLOPs

Pulse 
Compression
112MFLOPs

Doppler
Filtering

32.4MFLOPs

STAP
47MFLOPs

Subband
Synthesis

Data 
Combination

Time Delay & 
Equalization
146MFLOPs

Adaptive
Beamforming

42MFLOPs

Pulse 
Compression
112MFLOPs

Doppler
Filtering

32.4MFLOPs

STAP
47MFLOPs

Subband
Synthesis

Subband
Analysis

(a) Clustered (b) Fragmented

Interference 
from other application 
is modeled by  random 
traffic generator

Parameter Values

GMTI resource 
requirements 128 tiles 868 tiles

Free tiles Fragmented Clustered

Mapping technique Random Heuristic

Task frequency 1 KHz 2 KHz

* Total 16 cases
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128-Tile 1 KHz GMTI Performance

For high network loads, mappings on fragmented resources cause network load 
imbalance and longer latencies. In some cases, traffic causes network overload. 
For high network loads, mappings on fragmented resources cause network load 
imbalance and longer latencies. In some cases, traffic causes network overload.



Approved for public release, distribution unlimited 16

128-Tile 2 KHz GMTI Performance

With higher task frequencies (performance),  latency is sensitive to both 
resource allocation method and fragmentation of the resources. 
With higher task frequencies (performance),  latency is sensitive to both 
resource allocation method and fragmentation of the resources.
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868-Tile 1 KHz GMTI Performance

With higher GMTI allocation, latency is: 
- less sensitive to background network load 
- more sensitive to task mapping algorithm than fragmentation of the resources

With higher GMTI allocation, latency is: 
- less sensitive to background network load
- more sensitive to task mapping algorithm than fragmentation of the resources
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868-Tile 2 KHz GMTI Performance

With higher GMTI allocation and task frequencies (performance), random 
mapping does not work at all. 
With higher GMTI allocation and task frequencies (performance), random 
mapping does not work at all.
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Network-Oriented Problem Space

Clustered free tiles / 
Communication patterns are 
known

- Near optimal mapping is 
possible
- Adaptability to run-time
dynamic behavior

Clustered free tiles / 
communication patterns are NOT known

- Initially random mapping
(possibly quite bad performance)
- Learning the communication pattern
- Remapping for performance improvement

Fragmented free tiles / communication 
patterns are known

- Initially reasonable mapping (still 
possibly bad performance)
- Task migration for enhanced 
performance and defragmentation

Fragmented free tiles /
communication patterns are 
NOT known ahead

- Initially random mapping 
(worst performance)
- Learning the communication 
pattern
- Task migration for enhanced 
performance and 
defragmentation

Task Migration/
Defragmentation

Learn 
communication

patterns

Learn 
communication 

patterns
Task Migration/

Defragmentation

More intelligence leads to better resource management 
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Future Work

Run-time profiling technique
Low overhead
Detecting network load imbalance
Detecting communication patterns, dependencies
Detecting processor load imbalance

Gradual morphing technique
Intelligent partial remapping of the application

Hot spot removal, load balancing
Adaptive changes of parallelism of the application

Adaptive to the status of free resources

Run-time support for gradual morphing
Task migration
Dynamic changes of parallelism of the application

Dynamic adaptation of code
Expression of dynamic changes of code at run-time
Dynamic code generation
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Conclusion

Large multi-tiled architectures will require intelligent 
run-time systems for resource allocation and dynamic 
mapping

Future applications will be complex and will need to respond to 
unexpected events
Future, large-scale multi-tiled architectures will require application 
sharing and arbitration of resources

In this research, we have explored the effect of dynamic 
application variations on multi-tiled performance

Dynamic IRT with representative mode changes and load variations
causes resource fragmentation over time
Application mappings must be done carefully in order to provide robust 
behavior

Future work will involve the application of knowledge-
based and machine learning algorithms to the profile-
based dynamic resource management
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