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Motivation

m Rising processor density, multi-core architecture
OMIT Raw 4x4
O 8-core 64-thread SUN Niagara 2 processor
O Tilera TILE6G4 processor
O Intel 80-core Teraflops prototype processor
O In the future: 32x32 or larger

m Dynamic applications

0O With large-scale architectures, multiple applications will share tile
array; need to arbitrate resources between applications

0O Requirements are unpredictable and changing in response to
environment

O Need for dynamic mapping, allocation/deallocation, resource
management

m Need for more intelligent run-time systems
O Better resource allocation for efficiency
O New system capabilities to alleviate programming burden
O Dynamic reactivity for changing scenarios
O Complex optimization space
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Research Goal: Intelligent Run-Time BGA
Resource Allocation

m Application of knowledge-based and learning techniques to
the problem of dynamic resource allocation in a tiled
architecture

0O Planning and optimization of resource usage given application
constraints

0 Knowledge derived from dynamic performance profiling, modeling,
and prediction

O Run-time learning of resource allocation trade-offs

m Proof-of-concept demonstration: simulation of application
workload to compare performance of manual and automatic
resource allocations

O Define representative application
0O Develop scalable simulation
O Define resource mapping problem and apply intelligent technique

m Current work: definition of problem, construction of
simulator, and preliminary study to quantify performance
effects
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System Framework BGA
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ISI Simulator for Multi-Core Architecture BGA

m Event-driven simulator
O In SystemC
O Based on ARMN multiprocessor simulator from Princeton Univ.

m Generic processor module
O Proportional share resource scheduler
O Memory latency is implicit in computation time
O Parameterized specification: CPU speed, CPU-network interface speed, etc.

Profile info: m Network
Per link: O One network, 2-D mesh
Data amount O 5x5 crossbar switch
Blocking time O Message passing model
Per packet: O Store and forward routing
Latency O Parameterized specification: speed, buffer size, packet overhead, etc.
Blocking time | ¢ 4
Per task:
Event log
Blocking time p
Per CPU: ; | . i >
Utilization i i | ;
Tile . |! % _______ | mile | % _______ i
v , v |
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Simulation Approach PGA
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Dynamic Behavior
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Two performance effects over time:

m Resource fragmentation: incremental
resource allocation decreases locality

m Dynamic application requirements and
resource availability
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Example Application: Radar Resource pcA
Management using IRT
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Resource Fragmentation
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A Example: GMTI Application Mapping BGA
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128-Tile 1 KHz GMTI Performance m

GMTI End to end latency (128 tiles used
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For high network loads, mappings on fragmented resources cause network load
Imbalance and longer latencies. In some cases, traffic causes network overload.
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128-Tile 2 KHz GMTI Performance m
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With higher task frequencies (performance), latency is sensitive to both
resource allocation method and fragmentation of the resources.
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868-Tile 1 KHz GMTI Performance m

GMTI End to end latency (868 tiles used)
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With higher GMTI allocation, latency is:
- less sensitive to background network load
- more sensitive to task mapping algorithm than fragmentation of the resources
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GMTI! End to end latency (868 tiles used)
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With higher GMTI allocation and task frequencies (performance), random
mapping does not work at all.
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Fragmented free tiles /

communication patterns are
NOT known ahead

- Initially random mapping
(worst performance)

- Learning the communication
pattern

- Task migration for enhanced
performance and
defragmentation

Learn
communication
patterns

Network-Oriented Problem Space

REA

Fragmented free tiles / communication
patterns are known

Task Migration/
Defragmentation

- Initially reasonable mapping (still
possibly bad performance)

—>| - Task migration for enhanced

performance and defragmentation

Task Migration/
Defragmentation

Clustered free tiles /
communication patterns are NOT known

Clustered free tiles /

Communication patterns are
known

- Initially random mapping
(possibly quite bad performance)

- Learning the communication pattern

- Remapping for performance improvement

Learn
communication

- Near optimal mapping is
possible

- Adaptability to run-time
dynamic behavior

patterns

More intelligence leads to better resource manageme
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Future Work

m Run-time profiling technique
O Low overhead
O Detecting network load imbalance
0 Detecting communication patterns, dependencies
O Detecting processor load imbalance

m Gradual morphing technique

O Intelligent partial remapping of the application
e Hot spot removal, load balancing

0 Adaptive changes of parallelism of the application
e Adaptive to the status of free resources

m Run-time support for gradual morphing

O Task migration
0 Dynamic changes of parallelism of the application

m Dynamic adaptation of code
O Expression of dynamic changes of code at run-time
0 Dynamic code generation
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Conclusion BGA

m Large multi-tiled architectures will require intelligent
run-time systems for resource allocation and dynamic
mapping

O Future applications will be complex and will need to respond to
unexpected events

O Future, large-scale multi-tiled architectures will require application
sharing and arbitration of resources

m In this research, we have explored the effect of dynamic
application variations on multi-tiled performance

0 Dynamic IRT with representative mode changes and load variations
causes resource fragmentation over time

O Application mappings must be done carefully in order to provide robust
behavior

m Future work will involve the application of knowledge-
based and machine learning algorithms to the profile-
based dynamic resource management

Approved for public release, distribution unlimited 22



	Preliminary Study toward �Intelligent Run-time �Resource Management Techniques �for Large Tiled Multi-Core Architectures�
	Outline
	Motivation
	Research Goal: Intelligent Run-Time Resource Allocation
	System Framework
	Outline
	ISI Simulator for Multi-Core Architecture
	Simulation Approach
	Dynamic Behavior
	Outline
	Example Application: Radar Resource Management using IRT
	Resource Fragmentation
	Outline
	Example: GMTI Application Mapping
	128-Tile 1 KHz GMTI Performance
	128-Tile 2 KHz GMTI Performance
	868-Tile 1 KHz GMTI Performance
	868-Tile 2 KHz GMTI Performance
	Outline
	Network-Oriented Problem Space
	Future Work
	Conclusion

