
Approved for Public Release, Distribution Unlimited

Preliminary Study toward Intelligent Run-time Resource Management
Techniques for Large Multi-Core Architectures

Dong-In Kang, Jinwoo Suh, Janice O. McMahon, and Stephen P. Crago
University of Southern California – Information Sciences Institute

{dkang, jsuh, jmcmahon, crago}@isi.edu

Introduction1
The rising processor density and the advent of multi-core
architectures have increased the amount of on-chip
processing resources at a rate commensurate with Moore’s
Law. As the number of resources on-chip increases, it
becomes more likely that multiple applications will have to
share those resources, applications whose resource
requirements are independent of each other and vary in
response to their own environmental stimuli [1].
Maintaining high levels of performance on these
applications will require efficient, run-time arbitration of
on-chip resources. Such arbitration will require the ability
to allocate and de-allocate dynamically resources such as
cores and network links, and will defy the static mappings
and stove-piped parallelism of previous architectures.

This abstract motivates the need for intelligent run-time
resource management techniques for large multi-core
architectures. The need for these techniques arises from two
key factors: resource fragmentation and application
mapping. Resource fragmentation occurs when an
application is mapped to an irregular and spatially
discontinuous region of cores. Application mapping refers
to the assignment of tasks to cores in the processor such
that high performance is achieved by minimizing
communication latencies between tasks in the application.
To motivate the need for intelligent run-time systems, we
present a model of an actual application and specify how its
resource requirement might vary over time. We show how
resource fragmentation can occur under those specified
variations in resource requirements. Using a high-level
simulator developed at USC/ISI, we then show how
resource fragmentation and sub-optimal mapping affect
application performance for particular scenarios. Finally,
we describe future research being performed at USC/ISI to
develop an intelligent, dynamic run-time resource
allocation strategy for large multi-core architectures.

System Model
We assume a multi-core architecture that has identical cores
connected with a two dimensional mesh network. Each core
has a processor, local memory, and a network switch. Store
and forward packet switching is assumed to be used for the
communication between cores. The network switch at each
core is a 5x5 crossbar switch. An application may use

This effort was sponsored by Defense Advanced Research Projects
Agency (DARPA) through the Dept. of Interior National Business Center
(NBC), under grant number NBCH1050022. This abstract is approThe U.S.
Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or
endorsement, either expressed or implied, of the Defense Advanced
Research Projects Agency (DARPA), Dept. of Interior, NBC, or the U.S.
Government.

multiple cores and is assumed to be able to change its
configuration dynamically at run-time. The characteristics
of an application may or may not be known ahead. Relevant
characteristics include computational requirements,
communication amounts, and a task graph (which specifies
a communication topology). However, as an application
changes its configuration at run-time, characteristics such as
degree of parallelism, the computation/communication
needs and communication pattern may also change
dynamically. Such dynamicity makes resource allocation
and performance tuning harder because an optimal
allocation at one time will not continue to be optimal as an
application changes its configuration dynamically.

Simulation Environment
We built a high level performance simulator for large multi-
core architectures using SystemC. Our simulator is based
on the ARMn multiprocessor simulator [2], with major
modifications. The network switch and network topology
are adopted from ARMn. We built a generic processor
module with a built-in proportional share resource
scheduler. Clocked simulation is replaced with a high-level
event driven simulation approach for faster simulation.
Many system-dependent factors are run-time parameterized,
including core CPU speed, network speed, CPU-network
switch interface speed, packet size, overhead of control
information in a packet, and network buffer size per input
port of the network switch.

Simulation Scenario and Results
 The application used in this study is derived from a Ground
Moving Target Indicator (GMTI) radar processing stream.

The flow graph is shown in Figure 1, where a circle denotes
a task and arrows denote communication between tasks The
task graph consists of a set of parallel chains with a sink
node. The computation and the communication amounts are
set such that each task consumes up to 7.5% of CPU time
and a communication consumes up to 7.5% of the
bandwidth of a network link. The application can change its
computation/communication requirements by changing the
number of the task chains, which effectively changes
degree of parallelism.
Resource Fragmentation: To study the resource
fragmentation, we used two applications. One application is
GMTI. The other application is a model of a Feature-Aided
Tracker (FAT) in which target density profiles in a spatial
region are modeled as random processing loads over a set

Subband
Analysis

Time Delay &
Equalization

Adaptive
Beamforming

Pulse
Compression

Doppler
Filtering

STAP Subband
Synthesis

Data
Combination

Time Delay &
Equalization

Adaptive
Beamforming

Pulse
Compression

Doppler
Filtering

STAP Subband
Synthesis

Subband
Analysis

Figure 1. Task Graph of the Application Used

Approved for Public Release, Distribution Unlimited

of cores. The resource requirements of GMTI are varied by
sequencing over a limited combination of modes. Modes
are defined by sets of parameters. We limited mode changes
to variations in one parameter so that the changes in
computation requirements are gradual. The resource
requirements of FAT are varied by randomly changing the
total computational requirement of FAT within ±10% to
simulate gradual changes in the number of targets in the
field. GMTI is a higher priority task and cores are allocated
to FAT only after the needs of the current GMTI mode are
met. In each time step, we derived a new resource
requirement and allocated or de-allocated cores as needed.

Our core allocation strategy used a simple linear resource
allocation technique, which searches for and allocates the
free cores from core (0, 0). The snapshots of the fragmented
resources are shown in Figure 2(b), where ‘X’ denotes
cores allocated to GMTI, ‘.’ to FAT. Blank denotes free
cores. As is shown in Figure 2, cores are highly fragmented
within GMTI and FAT after 25 time steps.

Application Mapping: Application mapping onto available
resources affects the performance of an application. With
the full knowledge of the characteristics of an application,
including communication patterns, it is possible to do
decent application mapping. However, without a priori
knowledge of communication patterns, which is often the
case in real world, an automated application mapping can
be as bad as a random mapping. We performed experiments
on four cases: 1) Heuristic mapping on clustered cores, 2)
Random mapping on clustered cores, 3) Heuristic mapping
on fragmented cores, 4) Random mapping on fragmented
cores. We used the flow graph shown in Figure 1 for the
applications mapped on to the system. Heuristic mapping
maps the tasks in a chain onto nearby cores. The simulation
was done for two sizes of the application, one occupying
128 of 1024 (32x32) cores and the other occupying 868 of
1024 (32x32) cores. For clustered experiments, 16x8 cores
and 31x28 cores from the upper left corner are used. For
fragmentation experiments, the cores are distributed
randomly. End-to-end latency of the application is
measured as a performance metric for comparison.
Simulation Results: We simulated network traffic
interference from other by randomly generating network
packets to and from non-GMTI cores. The network load
generated by a non-GMTI core varies from 2.5% to 12.5%
of the network link bandwidth. It should be noted that
overall network load depends on the number of non-GMTI
cores. For example, the experiment of 128 cores has about 7
times higher network load than that of 868 cores. For all
cases, random mapping results in poor performance, which
is expected. Mapping on fragmented resources tend to be

more prone to network interference from other applications
in the system. When the effect of network inference is small,
application mapping dominates the performance, which is
shown in Figures 3(a) and (b). Since the experiment of 868
cores uses most of the core for GMTI, it is less prone to the
non-GMTI background network load. However, the quality
of application mapping becomes more critical than the 128-
core case.

End to end latency (128 tiles used)

0

1000

2000

3000

4000

5000

6000

7000

8000

0% 2.50% 5% 7.50% 10%
Background network load by non-GMTI tiles

L
a
te

n
c
y

Nonfragmented and
heuristic mapping

Fragmented and random
mapping

Fragmented but heuristic
mapping

Nonfragmented and
random mapping

Unstable State

 (a) 128 cores are allocated

End to end latency (868 tiles used)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0% 2.50% 5% 7.50% 10% 13%

Background network load by non-GMTI tiles

L
a
te

n
c
y Nonfragmented and

heuristic mapping

Fragmented and
random mapping

Fragmented but
heuristic mapping

Nonfragmented and
random mapping

(b) 868 cores are allocated

Figure 3. End-to-end latency changes

Conclusion
In this research, we have studied resource fragmentation
and application mapping for multi-core architectures in
order to motivate the need for intelligent run-time systems
to dynamically manage on-chip processing resources. We
have also studied the manner in which inter-application and
intra-application interferences through the shared network
links can also degrade performance. Our hypothesis is that
an intelligent run-time resource management technique can
prevent resource fragmentation in dynamic applications and
can improve performance over time by adjusting
application mappings as necessary. The next phase of our
research will include prototyping an intelligent run-time
system. This system will introspect and monitor the
behavior of applications on the multi-core architecture and
use that information, combined with previous knowledge,
to learn resource allocations and mappings which improve
performance of applications over time.

References
[1] L. V. Kale, S. Kumar, and J. DeSouza, “A Malleable-Job

System for Timeshared Parallel Machines,” 2nd IEEE/ACM
Int’l Symposium on Cluster Computing and the Grid, 2002.

[2] X.Zhu and S.Malik, "Using A Communication Architecture
Specification in an Application-driven Retargetable
Prototyping Platform for Distributed Processing",
Proceedings of DATE 04, Feb, 2004.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX...................

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.X...XX....XX.X.X.X.X.XXX...X.X.......X.X.XX..XXXX.XXX....XX..XXXXXX.X..XXX.XXXX.XXXX......X..X.XX....X.X...X.X.X..X.XXXX.XX.XX.XX..XX...XX.XXX.XXXX.X.X.XXXXXXX..XX....XX..XX..XXX..XXX.X..X.XXXXX...X.X.X.XXX..X.X.XX..XXX.XX.X.X.....X.XXX....X.X.X....XX..XX.XXXXX..X.XXX....X.XXX.X....X..X...XX.X.....XXX.XXXXX.XX.X.....X..XXXX.XXX...X.X.X.X.X.XXXXXX.X.X...X..XXXX...X..X.....XX..X....XX...X...X..XX..X..X..XX.XX.....XXXX....XX....XX..XXX.XX..X.XXXXXXX.X......X.X.XX.X.XXX.X..XXX.......XX.X....X.X.........XX.XX.X.X.XXXX...XX..X.X.X.... X X X. .X .X X X. .X. X X ..XX .XXX X.X .XXXX. ... XXX..X XX X..XXX XX. .XXXXXX.X. . X X . .X . XXXX..X.. .XX. XX X . X.X. XXXXXX.X .X...X .X X XX X X....X . ..X . .X . X.X. . . XX. XX. X..X.X ...XX X.X . X . X X. X..X . X. X ..X..X.XX.. . .X .X. X..... ...XX...X.. ... X X X .X.X . XX. X X X.... ..X ..X.X.. X .XX . X X. X. XXX.X. XXX X X X X X

Figure 2. Resource Fragmentation
(a) Initial State (b) 25-th reconfiguration

