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Introduction1 
The rising processor density and the advent of multi-core 
architectures have increased the amount of on-chip 
processing resources at a rate commensurate with Moore’s 
Law. As the number of resources on-chip increases, it 
becomes more likely that multiple applications will have to 
share those resources, applications whose resource 
requirements are independent of each other and vary in 
response to their own environmental stimuli [1]. 
Maintaining high levels of performance on these 
applications will require efficient, run-time arbitration of 
on-chip resources. Such arbitration will require the ability 
to allocate and de-allocate dynamically resources such as 
cores and network links, and will defy the static mappings 
and stove-piped parallelism of previous architectures. 

This abstract motivates the need for intelligent run-time 
resource management techniques for large multi-core 
architectures. The need for these techniques arises from two 
key factors: resource fragmentation and application 
mapping. Resource fragmentation occurs when an 
application is mapped to an irregular and spatially 
discontinuous region of cores. Application mapping refers 
to the assignment of tasks to cores in the processor such 
that high performance is achieved by minimizing 
communication latencies between tasks in the application. 
To motivate the need for intelligent run-time systems, we 
present a model of an actual application and specify how its 
resource requirement might vary over time. We show how 
resource fragmentation can occur under those specified 
variations in resource requirements. Using a high-level 
simulator developed at USC/ISI, we then show how 
resource fragmentation and sub-optimal mapping affect 
application performance for particular scenarios. Finally, 
we describe future research being performed at USC/ISI to 
develop an intelligent, dynamic run-time resource 
allocation strategy for large multi-core architectures.  

System Model  
We assume a multi-core architecture that has identical cores 
connected with a two dimensional mesh network. Each core 
has a processor, local memory, and a network switch. Store 
and forward packet switching is assumed to be used for the 
communication between cores. The network switch at each 
core is a 5x5 crossbar switch. An application may use 
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multiple cores and is assumed to be able to change its 
configuration dynamically at run-time. The characteristics 
of an application may or may not be known ahead. Relevant 
characteristics include computational requirements, 
communication amounts, and a task graph (which specifies 
a communication topology). However, as an application 
changes its configuration at run-time, characteristics such as 
degree of parallelism, the computation/communication 
needs and communication pattern may also change 
dynamically. Such dynamicity makes resource allocation 
and performance tuning harder because an optimal 
allocation at one time will not continue to be optimal as an 
application changes its configuration dynamically. 

Simulation Environment 
We built a high level performance simulator for large multi-
core architectures using SystemC. Our simulator is based 
on the ARMn multiprocessor simulator [2], with major 
modifications. The network switch and network topology 
are adopted from ARMn. We built a generic processor 
module with a built-in proportional share resource 
scheduler. Clocked simulation is replaced with a high-level 
event driven simulation approach for faster simulation. 
Many system-dependent factors are run-time parameterized, 
including core CPU speed, network speed, CPU-network 
switch interface speed, packet size, overhead of control 
information in a packet, and network buffer size per input 
port of the network switch. 

Simulation Scenario and Results 
 The application used in this study is derived from a Ground 
Moving Target Indicator (GMTI) radar processing stream. 

The flow graph is shown in Figure 1, where a circle denotes 
a task and arrows denote communication between tasks The 
task graph consists of a set of parallel chains with a sink 
node. The computation and the communication amounts are 
set such that each task consumes up to 7.5% of CPU time 
and a communication consumes up to 7.5% of the 
bandwidth of a network link. The application can change its 
computation/communication requirements by changing the 
number of the task chains, which effectively changes 
degree of parallelism. 
Resource Fragmentation: To study the resource 
fragmentation, we used two applications. One application is 
GMTI. The other application is a model of a Feature-Aided 
Tracker (FAT) in which target density profiles in a spatial 
region are modeled as random processing loads over a set 
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Figure 1. Task Graph of the Application Used 



Approved for Public Release, Distribution Unlimited 

of cores. The resource requirements of GMTI are varied by 
sequencing over a limited combination of modes. Modes 
are defined by sets of parameters. We limited mode changes 
to variations in one parameter so that the changes in 
computation requirements are gradual. The resource 
requirements of FAT are varied by randomly changing the 
total computational requirement of FAT within ±10% to 
simulate gradual changes in the number of targets in the 
field. GMTI is a higher priority task and cores are allocated 
to FAT only after the needs of the current GMTI mode are 
met. In each time step, we derived a new resource 
requirement and allocated or de-allocated cores as needed. 

Our core allocation strategy used a simple linear resource 
allocation technique, which searches for and allocates the 
free cores from core (0, 0). The snapshots of the fragmented 
resources are shown in Figure 2(b), where ‘X’ denotes 
cores allocated to GMTI, ‘.’ to FAT. Blank denotes free 
cores. As is shown in Figure 2, cores are highly fragmented 
within GMTI and FAT after 25 time steps. 

 
Application Mapping: Application mapping onto available 
resources affects the performance of an application. With 
the full knowledge of the characteristics of an application, 
including communication patterns, it is possible to do 
decent application mapping. However, without a priori 
knowledge of communication patterns, which is often the 
case in real world, an automated application mapping can 
be as bad as a random mapping. We performed experiments 
on four cases: 1) Heuristic mapping on clustered cores, 2) 
Random mapping on clustered cores, 3) Heuristic mapping 
on fragmented cores, 4) Random mapping on fragmented 
cores. We used the flow graph shown in Figure 1 for the 
applications mapped on to the system. Heuristic mapping 
maps the tasks in a chain onto nearby cores. The simulation 
was done for two sizes of the application, one occupying 
128 of 1024 (32x32) cores and the other occupying 868 of 
1024 (32x32) cores. For clustered experiments, 16x8 cores 
and 31x28 cores from the upper left corner are used. For 
fragmentation experiments, the cores are distributed 
randomly. End-to-end latency of the application is 
measured as a performance metric for comparison. 
Simulation Results: We simulated network traffic 
interference from other by randomly generating network 
packets to and from non-GMTI cores. The network load 
generated by a non-GMTI core varies from 2.5% to 12.5% 
of the network link bandwidth. It should be noted that 
overall network load depends on the number of non-GMTI 
cores. For example, the experiment of 128 cores has about 7 
times higher network load than that of 868 cores. For all 
cases, random mapping results in poor performance, which 
is expected. Mapping on fragmented resources tend to be 

more prone to network interference from other applications 
in the system. When the effect of network inference is small, 
application mapping dominates the performance, which is 
shown in Figures 3(a) and (b). Since the experiment of 868 
cores uses most of the core for GMTI, it is less prone to the 
non-GMTI background network load. However, the quality 
of application mapping becomes more critical than the 128-
core case. 
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(b) 868 cores are allocated 

Figure 3. End-to-end latency changes 

Conclusion 
In this research, we have studied resource fragmentation 
and application mapping for multi-core architectures in 
order to motivate the need for intelligent run-time systems 
to dynamically manage on-chip processing resources. We 
have also studied the manner in which inter-application and 
intra-application interferences through the shared network 
links can also degrade performance. Our hypothesis is that 
an intelligent run-time resource management technique can 
prevent resource fragmentation in dynamic applications and 
can improve performance over time by adjusting 
application mappings as necessary. The next phase of our 
research will include prototyping an intelligent run-time 
system. This system will introspect and monitor the 
behavior of applications on the multi-core architecture and 
use that information, combined with previous knowledge, 
to learn resource allocations and mappings which improve 
performance of applications over time. 
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Figure 2. Resource Fragmentation 
(a) Initial State (b) 25-th reconfiguration


