Thimble: Design-time
Analysis of Multi-threaded
System Behavior

11t Annual High Performance Embedded Computing Workshop
September 2007

A

LOCKHEED MABTIM%

Daniel Waddington

Advanced Technology Laboratories
email: dwadding@atl.Imco.com

1

LOCKHEED MARTINE#

Outline

Motivation
m Solution & Benefits
Tool Overview
m Reverse Engineering & Model Generation
m Systematic Model Execution
m Behavioral Analysis
m Data Presentation
m Currently Supported Design Metrics
m Examples
m Status
Further Work

09/2007 HPEC 2007 5

LOCKHEED MART’NE?

Motivation

m Parallel processing is feeding this decades demand for
Increased performance —commodity processors are
Increasingly multi-core

= CMP, CBE, GPU
m Software for these new platforms must be explicitly designed to
be concurrent
m Parallelizing compilers are typically limited to fine-grained parallelism
(e.g., loop unrolling)
= Multi-threaded programming is today’s principal approach to
Implementing concurrency

m Understanding good and bad design (with respect to
concurrency) is inherently difficult

= No experimental feedback

m In large-scale systems development, the ramifications of design
decisions are often not understood until late in the development
cycle (testing and integration)

09/2007 HPEC 2007 3

LOCKHEED MARTINE#

Solution & Benefits

m Provide tools (Thimble) that will allow multi-threaded systems
designers and developers to rapidly explore the design space
(with respect to concurrency and synchronization) and
understand the ramifications of design decisions

= Are threads contending? How much contention exists?

m Are the cores saturated over time? Will increasing the number of cores
lead to increased performance?

m Thimble will enable rapid evaluation of design decisions and
selection of effective architecture early in the development cycle
= Help optimize performance and avoid late-stage integration problems

Software and systems
development is a
wicked problem that
demands rapid
fluctuation between
problem and solution

O

09/2007 HPEC 2007 4

understanding.

LOCKHEED MART’NE?

Thimble Tool Overview

Existing C#
Source Code

d:cﬁ)b C@) Executable

Models

“Faux”
Components @

written in C#

-

Behavioral
Data

—— >

Feedback Design
Metrics

09/2007 HPEC 2007 5

LOCKHEED MARTINE#

Reverse Engineering & Model Generation

m Reverse engineering : structured interpretation of existing code

m Existing C# source code is parsed
m custom built parser implemented in ANTLR
m Symbol tables, scope relationships, etc., are build from the ASTs
m custom program analysis engine written in Stratego* functional programming
language
= Visual Studio 2005 project files are interpreted for built dependencies
and cross-references
m provides a complete program view across compilation units

m Model generation : building executable models from program
= Program analysis engine constructs executable models that accurately
represent the analyzed C# code for specific aspects of concern
= Bogor (a model checking framework from Kansas State University)
provides a guarded-transition language for specifying multi-threaded
systems
m explicit support for thread & lock constructs
m N0 object-oriented support (other that virtual function tables)
m explicit support for non-deterministic choice

* B Visser, “Stratego: A Language for Program Transformation based on Re-writing Strategies”,

System Description of Stratego, RT':A "01, LINCS pp.357-361, Springer Verlag May 2001.
09/2007 HPEC 2007 5

LOCKHEED MABTINE?

Example Model Generation

C# Code public void Start()
{

mActiveThread = new Thread(ts);

o

Generated function {|ThreeWayActors.Actor.Start.()|}((|ThreeWayActors.Actor])[|this|])

Bogor {

Model

Code
/* assignment to new expression Program.cs:68 */
loc loc2: do { [|this|].mActiveThread := new (|System.Threading.Thread|); } goto loc3;
/* implicit ctor call for new expression statement Program.cs:68 */
loc loc3: invoke {|Ctor.System.Threading.Thread.(System.Threading.ThreadStart)|}([|this|]. mActiveThread,ts)
goto loc4;

09/2007 }

LOCKHEED MARTINE#

Reverse Engineering & Model Generation

m Model cut-off points

m Bogor models are only generated for “visible” source code; cut-off points
define the limits of the modeled system (e.g., invocations on system
calls that are not directly concerned with concurrency and
synchronization are omitted)

m System libraries are either:
a.) implemented manually in Bogor modeling language
b.) left as empty stubs (cut-off points)
c.) simulated directly in Java code

m Thimble models are abstract — only details that are pertinent to
synchronization and concurrency are retained
m Storage (and persistent data) is not modeled
= Interaction with the environment must be simulated

m Challenges of deriving “representative” behavior

= Traditionally model-checking performs exhaustive searching of the state
space and therefore does not care about time per se (only ordering)

= Thimble must imitate wall-clock time by scaling the number of quanta
needed to perform external functions (timings collected from run-time
profiling)

09/2007 HPEC 2007 8

LOCKHEED MARTINE#

Systematic Model Execution

m Bogor models of the system are model-checked
= Model-checking allows controlled state exploration

m Pluggable search strategies control how state space is
explored

m Currently implemented strategies
m Exhaustive (takes a long time even with partial-order reduction)
= Random (comparable to simulated execution)
m complete execution paths are randomly selected
= Pathological

= path selection is based on the variance of data on candidate paths;
representatives of dissimilar-path groups are searched first

m approach allows worst-case scenarios to be identified
m Support for N-core abstract machines
m Model-checker effectively simulates an abstract machine
= Number of cores is selectable through tool
m collapsing N scheduling decisions into one
m supporting frame-based scheduling and thread core-affinities
m Distributed execution

= Model checking can be distributed to multiple nodes (this processing
requires a lot of horsepower)

09/2007 HPEC 2007 9

LOCKHEED MARTINE#

Behavioral Analysis

m Raw data collected from model checker
m Scheduling matrices

m thread state (running, ready, block, doesn’t exist) over time
m 0one maitrix for each inspected inter-leaving (execution path)
m N-core scheduling states collapsed into one

= Potentially large amounts of data O(100Mb)
m HDF5 data format

m Data is distilled in Mathematica
m Simple statistical analysis
m Efficient matrix manipulation (e.g., sum)
m Powerful analysis libraries (e.g., cluster analysis)
m Off-the-shelf data visualization

09/2007 HPEC 2007 10

LOCKHEED MARTINE#

Data Presentation

m The Thimble front-end is fully integrated into Visual
Studio 2005

Example
scheduling

matrix

Output |54 Find Results 1 | g3 Find Sym

09/2007 HPEC 2007 11

- LOCKHEED MAW
Currently Supported Metrics

m Effective Parallelism Index (EPI) - over time, how many of the
threads that have been created are able to perform work

concurrently

100 Execution Samples for 5-Threaded

System (4 Active, 4 Passive) Matrix Work Raster images allow

variance across

potential executions
Effective Parallelism

10 ————— to be quickly
' assessed

Quanta

2000 3ooo 4000 5000

1]
1] 1000 2000 3000 4000 5000 G000

Quanta

09/2007 HPEC 2007

LOCKHEED MAW
Example Graph: Interpreting EPI Graphs

Handovers

Effective Parallelism
1.0

Handover
overlaps
(two threads

runnable .
) Non-determinism

1

1

I

I

I

I

1

1

I

I

I

I

1

1

I

I

I

I

1
cn] =

I

I

I

I
sl
g

Single thread
holding

Cuanta

2000 4000 5000 G000

resources

Single thread (zero contention)
Threads begin to complete

09/2007 HPEC 2007 13

- LOCKHEED MAW
Currently Supported Metrics

m Saturation Index (SI) — shows how threads that have been created
iInduce load on the system
All cores saturated
Saturation Index
calculated for 8 cores Saturation Coefficient

1.0
and an 8 actor system.

Quanta

1 thread running at Threads completing
this point
09/2007 HPEC 2007 14

LOCKHEED MART’NE?

Status

m Project started January 2006 as part of the Lockheed Martin
Software Technology Initiative (STI)

m [eam
m Lockheed Martin ATL
m Kansas State University (Prof. John Hatcliff & Prof. Robby)
= Vanderhilt (Prof. Doug Schmidt)

m Proof-of-concept prototype implementation expected to
completed by EQY 2007

m Current status
m 70% C# version 2.0 supported

= Only supports round-robin scheduler (systems with multi-priority threads
are not currently accurately modeled)

m Support for random and exhaustive searching (pathological in
development)

= MDD-tool in development

09/2007 HPEC 2007 15

LOCKHEED MAW
Further Work

m Technology piloting
= Deployment of tool on Lockheed Martin Astraeus test bed (1Q08)
m experimental facility to allow evaluation of different multi-core platforms

= Piloting tools with LM IS&GS Horizon satellite ground station framework
m partnering with sponsor of work

m Possible future avenues
= Coupling with Model-Driven Development tools (domain specific models of
execution and concurrency supporting round-trip engineering)

= Extensions to support Java
m consider a subset of C# language features

m Support for behavioral data collection from actual execution — modification of OS
kernel scheduler to collect scheduling matrices.
m allow experimental quantification of model accuracy

m Support for multiple task schedulers beyond round-robin
m e.g., Simulation of dynamic priority queues, RMS, EDF

= Isolation and selection of execution segments to support larger code bases

m Extension of existing design metrics
= Thread Coupling Index — to quantify inter-dependencies across threads
= Logical flow analysis to help identify hidden causal chains

09/2007 HPEC 2007 16

LOCKHEED MARTINE#

Questions?

09/2007 HPEC 2007 17

LOCKHEED MARTINE#

Backup Slides

09/2007 HPEC 2007 18

LOCKHEED MABTINE#

Thimble Solution Architecture

Analyze raw thread data
and identify behavioral
patterns and anti-patterns
(undesirable patterns) in
Data Analysis the data as well as
behavioral Sub-system compute design metrics
e (e.g., Effective Parallelism
Index)

Present distilled information
in an interactive manner

Main Design/GUI
Sub-system

Mathematica

Mathematica

Uses program JavaView 3D Visnalizer
analysis to build Source Piccolo 2D Toolkit (UM) »
executable Cradle timing

distributions

bebavioral data (partial)

models

Model Checking Executing

Engineering Sub-system
Sub-system (Spindle)
(Needle)

Stratego (Utrech)

Reverse Run-time Profiling

Sub-system

models System

Bogor (KSU) Microsoft C# CLLR

trace information

ANTLR (USF)

Collect representative data on
timing and parameter data for
Execute program models over a library calls that are not explicitly
sample of the “theoretically” modeled (e.g., system-calls)
possible execution paths

09/2007 HPEC 2007 19

LOCKHEED MARTINE#

Key Innovations

1.

Use of model-checking in a sampling mode to mine
representative behavior patterns

Integration of behavioral signatures collected from run-time
profiling with statically derived models

Definition of design metrics that can be used to formally
guantify the behavior of a program with respect to concurrent
execution

m Effective Parallelism Index (EPI) — how effectively threads are being
used; indirectly gives a measure of lock-step caused by blocking

m Saturation Index (SlI) — actual versus potential processor utilization over
time
m Thread Coupling (TC) — measure of level of cross-thread dependencies

Modification of abstract machine to perform “what-if” analyses
for future N-way architectures

09/2007 HPEC 2007 20

	Thimble: Design-time�Analysis of Multi-threaded �System Behavior��11th Annual High Performance Embedded Computing Workshop�September 2007
	Outline
	Motivation
	Solution & Benefits
	Thimble Tool Overview
	Reverse Engineering & Model Generation
	Example Model Generation
	Reverse Engineering & Model Generation
	Systematic Model Execution
	Behavioral Analysis
	Data Presentation
	Currently Supported Metrics
	Example Graph: Interpreting EPI Graphs
	Currently Supported Metrics
	Status
	Further Work
	Questions?
	Backup Slides
	Thimble Solution Architecture
	Key Innovations

