
 

Thimble: Design-time  
Analysis of Multi-threaded System Behavior 

 
Daniel G. Waddington   

Lockheed Martin Advanced Technology Laboratories 
3 Executive Campus 

Cherry Hill, NJ 08002 
dwadding@atl.lmco.com 

 
 
Abstract 
Commercial multi-core processors promise to provide more 
processing capacity than their single-core counterparts, in a 
comparable physical footprint.  To fully leverage the 
increased processing throughput offered by multi-core 
solutions, however, systems must be explicitly developed 
with concurrent execution in mind. 
 
Today, the predominant approach to building concurrent 
software is through the use of multi-threaded programming.   
Unfortunately, writing multi-threaded code is inherently 
time consuming and error prone.  Furthermore, identifying 
the emergent behavior of multi-threaded systems before 
final integration and testing is almost impossible.  
 
As part of the Lockheed Martin Software Technology 
Initiative (STI), we have been developing a prototype tool 
called Thimble to help eliminate key challenges faced by 
large-scale multi-threaded systems development.  Using an 
integrated combination of modeling and run-time profiling, 
Thimble supports design-time exploration and 
understanding of the solution space, helping to both rapidly 
identify undesirable concurrency-related behavioral 
characteristics, such as lock-stepping and deadlock, and to 
enable “what if” analyses with respect to different possible 
solutions.  The tool is centered on the analysis of executable 
models that are either directly specified or reverse 
engineered from legacy implementations (see Figure 1).  
Changes in the design can be rapidly evaluated through a 
visual distillation of the behavioral data. 
 
The Thimble user builds a representative system by 
combining elements of program logic from existing code as 
well as through the use of “faux” components that mimic 
the behavior of components yet to be built or those that 
cannot run in an experimental environment.  The system is 
modeled as a partial implementation (in our case, the 
implementation language is C#).  Functionality directly 
relevant to multi-threading and task coordination (e.g., 
control logic) is defined in the model while other functional 
elements are simulated.  This approach allows a precise 
representation, at the abstract model level, of the 
synchronization and concurrency semantics of the final 
system implementation. 
 
Thimble executable models are implemented in the Bogor 
BIR guarded-transition language [2].  BIR models are  

directly generated from the C# source code through    
parsing and static program analysis. The program analysis 
and model generation functions are implemented in        
Stratego [3].  This is a functional language specifically 
aimed at performing AST analysis and re-writing. 
 

���������	


����
�
	����

�����������

�������

�����
�

��

���

�
��
���

��������

�
	�
����
	���

 ���!�

"�
���
��


�#�
���
���

 ���!�

�����
��


$�%������!�

&
�!#���

��
��

'����

�
��


��������	�


��
�	�

���
����

���������	


����

������


�������

 
Figure 1. Logical Overview of Thimble 

Once the system model is defined, the Thimble tool allows 
controlled execution and collection of behavioral data (for 
possible execution paths) with respect to scheduling 
patterns and synchronization interactions.  Thimble collects 
data via a custom searcher defined within the Bogor model 
checking framework.  Execution traces can be “mined” 
using a stateless randomized search or alternatively through 
a more guided algorithm aimed at identifying classes of 
behavior within the state space.  Our current 
implementation also supports parallel execution on a multi-
processor or distributed system. 
 
Raw data from the model execution phase is analyzed 
offline and distilled so users can quickly identify behavioral 
patterns and unexpected design anomalies.  Figure 2 
illustrates an example Thimble graph showing the Effective 
Parallelism Index (EPI) of a multi-threaded data processing 
application over time.  Intuitively, the EPI provides a 
measure of how threads that are created by the application 
are able to perform work concurrently with other threads in 
the system—a low EPI means that threads are highly 
interdependent and unable to effectively perform their work 
in parallel with other threads.  In this example graph, there 
is a clear period of time (between 4900-6000 quanta) where 
the EPI is fluctuating between 0.5 and 1.0.  This indicates 



 

that two threads are working in lock-step with each other, 
which may or may not be the designer’s intention. 

 
Figure 2.  Example Graph of Effective Parallelism Index 

The underlying objective of Thimble is to provide engineers 
and architects tool support to help understand the behavior 
of a given design.  The key innovations of our solution 
include: 
 
• Automated generation of executable models from 

existing assets through inspection of C# source code 
(static analysis) and collection of information from 
execution traces (dynamic analysis). 

• Formal definitions of a number of design metrics 
relating to effective use of multi-threaded and multi-
core architectures (e.g., Effective Parallelism Index, 
Saturation Index, Thread Coupling Index). 

• Use of systematic model execution (partially directed 
model-checking) to identify both general and 
pathological patterns of behavior.  

• Support for predictive analysis for different N-way 
multi-core platforms. 

 

Our presentation will review the current Thimble prototype 
and present some early experimental data that demonstrates 
the effectiveness of our solution within the context of a 
large-scale satellite command and control application. 
 

References 
[1] H. Sutter, “The Free Lunch Is Over: A Fundamental Turn 

Toward Concurrency in Software”, Dr. Dobb’s Journal, Vol. 
30, March 2005. 

[2] Robby, M. B. Dwyer and J. Hatcliff, “Bogor: An Extensible 
and Highly-Modular Model Checking Framework”, in the 
Proceedings of the Fourth Joint Meeting of the European 
Software Engineering Conference and ACM SIGSOFT 
Symposium on the Foundations of Software Engineering, 
March 2003. 

[3] E. Visser, “Stratego: A Language for Program 
Transformation based on Rewriting Strategies”, System 
Description of Stratego 0.5, in Rewriting Techniques and 
Applications (RTA’01), Vol. 2051, Lecture Notes in 
Computer Science, pp. 357-361, Springer Verlag, May 2001. 


