
Multiprocessor Implementation of a Face Detection System
Sankalita Saha1, Neal K. Bambha2 and Shuvra S. Bhattacharyya1,

1Department of Electrical and Computer Engineering, University of Maryland, College Park and
2US Army Research Laboratory, Adelphi, Maryland

ssaha@eng.umd.edu, nbambha@arl.army.mil, and ssb@eng.umd.edu

Introduction
Face detection and recognition research has attracted great
attention in recent years. Automatic face detection has great
potential in a large array of application areas; including
banking and security system access control, video
surveillance, and multimedia information retrieval, etc.
Face detection is a complex problem characterized by
computation- and memory- intensive operations. However,
many face detection algorithms have inherent parallelism in
them − both data as well as instruction-level − which when
properly exploited can yield significant performance gains.
Proper exploitation of this parallelism is not always easy,
however, since there are significant memory operations that
can overshadow the performance gain obtained by
parallelization. In this work we explore various target
multiprocessor architectures for this important application
and study the resulting performance-area trade-offs.

Face Detection
Face detection research has been an active area of research
for the past few decades. There are several approaches that
make use of shape and/or intensity distribution on the face.
In this work, we use a shape-based approach as proposed by
Moon et al [1] where a face is assumed to be an ellipse.
This method models the cross-section of the shape (ellipse)
boundary as a step function. Moon [1] proves that the
derivative of a double exponential (DODE) function is the
optimal one-dimensional step edge operator, which
minimizes both noise power and mean squared error
between the input and the filter output. The operator for
detecting faces is derived by extending the DODE filter
along the boundary of the ellipse. The probability of the
presence of a face at a given position is estimated by
accumulating the filter responses at the centre of the ellipse.
At the implementation level, this reduces to finding out
correlations between a set of ellipse shaped masks with the
image in which a face is to be detected. Figure 1 shows the
complete flow of the employed face detection algorithm. In
this work, we assumed that the number of masks and the
mask sizes are fixed, where, as mentioned before. For
operational value, the implementation should be able to
handle variability in size of the faces as that information is
not usually available a-priori. We handled this by creating
several elliptical masks of varying sizes. This entails
building of a large mask set and consequently a large
number of correlation computations.

Target Architectures
We examine three different architectures to explore
different area and performance results. The first target is a
general-purpose distributed-memory multiprocessor system.
The processors are a combination of IBM Netfinity and
Dell Poweredge hardware nodes. Specifically, each node is
a dual processor PIII-550 (2xPIII-550Mhz) with 1GB
memory and 2x18GB of disk capacity. Each node has a
1Gigabit link to the other nodes.

Figure 1: The flow of the face detection algorithm

The second architecture is a full hardware implementation,
utilizing multiple processing elements in hardware that each
perform a single task (a correlation function). The target
consists of a reconfigurable system on chip − Xilinx's
ML310 board, which contains a Virtex II Pro field
programmable gate array (FPGA) device. It also includes
on-chip and off-chip memory resources. Access to the off-
chip memory is assumed to be through a shared bus. On-
chip memory access can be performed through a shared bus
or via DMA.
The third architecture is an embedded multiprocessor
design consisting of multiple Xilinx Microblaze soft cores,
interconnect infrastructure, and hardware co-processing
elements. In this architecture, there is a choice of executing
functions in either hardware or software.

Distributed-Memory Multiprocessor
Implementation
Profiling results show that computing the correlation
between the image and the mask set (mask correlation) is
computationally the most expensive operation. However,
this operation is inherently parallelizable. The mask set can
be divided into subsets and each subset can be handled by a
single processor independent from the rest. Thus the main
tasks are building of masks (BMi) and finding correlation
between masks and image to find the best match (PEi). The
processor task assignment is shown in Figure 2 for the case

31

mailto:ssaha@eng.umd.edu
mailto:nbambha@arl.army.mil

of 3 processors for the correlation operation. Besides using
multiple processors for the correlation operation, we use a
separate processor to handle the required I/O operations
(reading of image RI and finalizing result RI).

Figure 2: Assignment of tasks to processors for the case of 4

processors.

The experiments were run on configurations of 4, 5, and 6
processors and 2 test benches were used. These test
benches, respectively, involved 126 and 114 masks; each of
size 121x191 and 127x183 pixels and image of size
128x192 pixels. Sample results for the case of 5 processors
is shown in table 1.

Table 1: Execution times for 1 frame for 5 processors and 2
testbenches for MPI implementation

Processor id Testbench 1
(secs)

Testbench 2
(secs)

0 1.544 1.356

1 1.427 1.31

2 1.434 1.302

3 1.433 1.315

4 1.438 1.327

FPGA Hardware Implementation
Figure 3 shows the high-level architecture model for the
face detection system. Our architecture consists of multiple
processing elements (PEs) that can concurrently execute
multiple instances of the correlation function and thereby
process masks simultaneously. From the face detection
algorithm, shown in Figure 1, a large set of masks is created
with which the image frame is compared. This mask set can
be created offline and moved to external memory. Each PE
reads masks with which it performs the correlation
operation from the external memory one at a time. Also no
two PE uses the same mask. Thus, each PE requires at least
one mask available on chip. To facilitate faster processing,
we stored 2 masks per PE at a time; when a PE operates on
the first mask the second one is read. Thus, this model
requires us to have multiple masks and copies of the frame
(concurrent access by the PEs) available on the chip, e.g., 3
PEs require 3 frame copies present on chip.
To minimize the rate of memory accesses and hence power
consumption, we partitioned the image into stripes and
processed the image one stripe at a time where a stripe is
defined to be the minimum size of the image that can be
processed on one pass. We run our mask set on a given
stripe of the image and find the maximum correlation value,

repeat the process for the next stripe, and continue in this
manner until we have exhausted all the stripes, and hence
the image. For a set of N masks and n PEs (i.e., masks can
be processed simultaneously), it will take ceil(N/n)
processing passes to cover all masks for a single stripe.
Here, ceil denotes the greatest integer that is greater than or
equal to the rational number.

Figure 3: Face detection system architecture

To keep the design space manageable, we fixed the frame
size (frame size = 240×320, stripe size = 65×160), and
varied other the number of PEs (i.e., n), the steps — the
granularity at which the image is correlated with a mask,
and the fine-grain parallelism (the number of additional
multiplications done simultaneously in each PE) up to the
permissible HW limits. The performance results for the
various design cases are shown in table 2.

Table 2: Execution times for 1 frame for different design
parameters for FPGA implementation

Execution time (in ms)
n Degree of parallelism

Steps = 2 Steps = 4

6 0 697 205

1 20 227 79

2 10 227 79

3 6 249 85

4 5 227 79

5 4 227 79

6 3 249 85

References
 [1] H. Moon, R. Chellappa, and A. Rosenfeld, “Optimal edge-

based shape detection”, IEEE Transactions on Image
Processing, 11: 1209–1227, 2002.

 [2] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “A
message passing standard for MPP and workstations”,
Communications of the ACM, 39(7):84–90, 1996.

32

