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Introduction 
Face detection and recognition research has attracted great 
attention in recent years. Automatic face detection has great 
potential in a large array of application areas; including 
banking and security system access control, video 
surveillance, and multimedia information retrieval, etc. 
Face detection is a complex problem characterized by 
computation- and memory- intensive operations. However, 
many face detection algorithms have inherent parallelism in 
them − both data as well as instruction-level − which when 
properly exploited can yield significant performance gains. 
Proper exploitation of this parallelism is not always easy, 
however, since there are significant memory operations that 
can overshadow the performance gain obtained by 
parallelization. In this work we explore various target 
multiprocessor architectures for this important application 
and study the resulting performance-area trade-offs. 
 
Face Detection 
Face detection research has been an active area of research 
for the past few decades. There are several approaches that 
make use of shape and/or intensity distribution on the face. 
In this work, we use a shape-based approach as proposed by 
Moon et al [1] where a face is assumed to be an ellipse. 
This method models the cross-section of the shape (ellipse) 
boundary as a step function. Moon [1] proves that the 
derivative of a double exponential (DODE) function is the 
optimal one-dimensional step edge operator, which 
minimizes both noise power and mean squared error 
between the input and the filter output. The operator for 
detecting faces is derived by extending the DODE filter 
along the boundary of the ellipse. The probability of the 
presence of a face at a given position is estimated by 
accumulating the filter responses at the centre of the ellipse. 
At the implementation level, this reduces to finding out 
correlations between a set of ellipse shaped masks with the 
image in which a face is to be detected. Figure 1 shows the 
complete flow of the employed face detection algorithm. In 
this work, we assumed that the number of masks and the 
mask sizes are fixed, where, as mentioned before. For 
operational value, the implementation should be able to 
handle variability in size of the faces as that information is 
not usually available a-priori. We handled this by creating 
several elliptical masks of varying sizes. This entails 
building of a large mask set and consequently a large 
number of correlation computations. 
 

Target Architectures 
We examine three different architectures to explore 
different area and performance results. The first target is a 
general-purpose distributed-memory multiprocessor system. 
The processors are a combination of IBM Netfinity and 
Dell Poweredge hardware nodes. Specifically, each node is 
a dual processor PIII-550 (2xPIII-550Mhz) with 1GB 
memory and 2x18GB of disk capacity. Each node has a 
1Gigabit link to the other nodes.  
 

 
Figure 1: The flow of the face detection algorithm 

The second architecture is a full hardware implementation, 
utilizing multiple processing elements in hardware that each 
perform a single task (a correlation function). The target 
consists of a reconfigurable system on chip − Xilinx's 
ML310 board, which contains a Virtex II Pro field 
programmable gate array (FPGA) device. It also includes 
on-chip and off-chip memory resources. Access to the off-
chip memory is assumed to be through a shared bus. On-
chip memory access can be performed through a shared bus 
or via DMA. 
The third architecture is an embedded multiprocessor 
design consisting of multiple Xilinx Microblaze soft cores, 
interconnect infrastructure, and hardware co-processing 
elements. In this architecture, there is a choice of executing 
functions in either hardware or software. 
 
Distributed-Memory Multiprocessor 
Implementation 
Profiling results show that computing the correlation 
between the image and the mask set (mask correlation) is 
computationally the most expensive operation. However, 
this operation is inherently parallelizable. The mask set can 
be divided into subsets and each subset can be handled by a 
single processor independent from the rest. Thus the main 
tasks are building of masks (BMi) and finding correlation 
between masks and image to find the best match (PEi). The 
processor task assignment is shown in Figure 2 for the case 
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of 3 processors for the correlation operation. Besides using 
multiple processors for the correlation operation, we use a 
separate processor to handle the required I/O operations 
(reading of image RI and finalizing result RI).   

 
Figure 2: Assignment of tasks to processors for the case of 4 

processors. 

The experiments were run on configurations of 4, 5, and 6 
processors and 2 test benches were used. These test 
benches, respectively, involved 126 and 114 masks; each of 
size 121x191 and 127x183 pixels and image of size 
128x192 pixels. Sample results for the case of 5 processors 
is shown in table 1. 
 

Table 1: Execution times for 1 frame for 5 processors and 2 
testbenches for MPI implementation 

Processor id Testbench 1 
(secs) 

Testbench 2 
(secs) 

0 1.544 1.356 

1 1.427 1.31 

2 1.434 1.302 

3 1.433 1.315 

4 1.438 1.327 

 

 
FPGA Hardware Implementation 
Figure 3 shows the high-level architecture model for the 
face detection system. Our architecture consists of multiple 
processing elements (PEs) that can concurrently execute 
multiple instances of the correlation function and thereby 
process masks simultaneously. From the face detection 
algorithm, shown in Figure 1, a large set of masks is created 
with which the image frame is compared. This mask set can 
be created offline and moved to external memory. Each PE 
reads masks with which it performs the correlation 
operation from the external memory one at a time. Also no 
two PE uses the same mask. Thus, each PE requires at least 
one mask available on chip. To facilitate faster processing, 
we stored 2 masks per PE at a time; when a PE operates on 
the first mask the second one is read. Thus, this model 
requires us to have multiple masks and copies of the frame 
(concurrent access by the PEs) available on the chip, e.g., 3 
PEs require 3 frame copies present on chip.  
To minimize the rate of memory accesses and hence power 
consumption, we partitioned the image into stripes and 
processed the image one stripe at a time where a stripe is 
defined to be the minimum size of the image that can be 
processed on one pass. We run our mask set on a given 
stripe of the image and find the maximum correlation value, 

repeat the process for the next stripe, and continue in this 
manner until we have exhausted all the stripes, and hence 
the image. For a set of N masks and n PEs (i.e., masks can 
be processed simultaneously), it will take ceil(N/n) 
processing passes to cover all masks for a single stripe. 
Here, ceil denotes the greatest integer that is greater than or 
equal to the rational number. 
 

 
Figure 3: Face detection system architecture 

To keep the design space manageable, we fixed the frame 
size (frame size = 240×320, stripe size = 65×160), and 
varied other the number of PEs (i.e., n), the steps — the 
granularity at which the image is correlated with a mask, 
and the fine-grain parallelism (the number of additional 
multiplications done simultaneously in each PE) up to the 
permissible HW limits. The performance results for the 
various design cases are shown in table 2. 

 

Table 2: Execution times for 1 frame for different design 
parameters for FPGA implementation 

Execution time (in ms) 
n Degree of parallelism 

Steps = 2 Steps = 4 

6 0 697 205 

1 20 227 79 

2 10 227 79 

3 6 249 85 

4 5 227 79 

5 4 227 79 

6 3 249 85 
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