

Multiprocessor Implementation of a Face Detection System

HPEC 2007

September 18, 2007

Sankalita Saha¹, Neal K. Bambha² and Shuvra S. Bhattacharyya¹

¹Electrical and Computer Engineering Department, University of Maryland, College Park MD, USA

² Army Research Lab, Adelphi, MD, USA

- Face detection and recognition
 - Important application for smart cameras,
 - Typically characterized by computational and memory intensive operations
 - Require significant performance for real- time realization
 - Multiprocessor implementation is an effective approach for power/performance gains for such systems

Face Detection Algorithm

Architecture for Hardware Implementation

DEPARTMENT OF ELECTRICAL &

COMPUTER ENGINEERING

Architecture for Software Implementation

4 processor implementation

RI: Reads Image / and downsamples it

BM_i: Creates the mask set for PE_i

PE_i: Computes correlation for mask set **BM**_i and image *I* and finds the local best match

FR: Finalize results by finding the best match amongst all the local matches and marking the outline

Pi: Processor id

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

