

Benchmarking Publish/Subscribe Middleware for Radar Applications
Andrew S. Rhoades, Glenn Schrader, Paul Poulin

{rhoades, gschrad, ppoulin}@ll.mit.edu, May 2007
MIT Lincoln Laboratory, Lexington, MA 02420

Introduction1
At MIT Lincoln Laboratory (MIT/LL), the need for port-
ability, upgradeability, and expandability in future radar
systems is leading to modular system design. In turn, the
modularity leads to the use of middleware solutions for
communications. However, the communication flows
within a system may have requirements that cannot be ade-
quately met with a single middleware solution, for reasons
such as needed features, platform availability, or interface
semantics. The communications requirements of these sys-
tems may include high message rates, high message band-
widths, and "hard" real-time constraints, meaning messages
are guaranteed to be received within an allotted time.

MIT/LL is developing a communications middleware layer
with publish/subscribe [1] semantics for use in these radar
applications. It is built on top of other communications
middlewares and provides a consistent communications ab-
straction to software engineers while allowing system engi-
neers to use different underlying middlewares as needed.

This middleware layer is expected to be part of the core in-
frastructure for future MIT/LL radar systems, carrying com-
mand, status, and data messages among subcomponents of
the systems. To test and verify the suitability of middle-
ware for communications in such systems, a benchmarking
application has been developed. The middleware, bench-
marking application, and some performance results are de-
scribed below.

Communications Middleware
The communications middleware that MIT/LL is develop-
ing is a thin abstraction layer that provides a simple C++
application programming interface (API) built on top of
other communications middlewares. This layer is "thin"
because it seeks to minimize any performance impact by
avoiding additional memory copying (zero-copy) and by
not adding features to the middlewares it sits on top of. It is
known as RTCL, for Radar Thin Communications Layer.

The idea is to create a single API that supports our applica-
tion domain but isolates application components from spe-
cific middleware details, both in the coding and in the
building process. Software written to this API is not tied to
any single communications middleware, so that choosing
the underlying middleware(s) is a system-engineering task,
not a software-engineering task. Multiple underlying mid-
dlewares may be also used together in one system. How the

This work is sponsored by the Department of the Air Force under Air
Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the authors and are not necessarily en-
dorsed by the United States Government.

communications of various components of a system are
plumbed together is also done as part of the system engi-
neering via run-time configuration files, rather than via
compile-time code changes.

The publish/subscribe paradigm provides location inde-
pendence for the software code of system components,
whose location is a system-engineering issue; they can be
on the same machine or different machines, on the same OS
or a mixed set of OSes, with no change to the software.
The RTCL publish/subscribe semantics are of a Data Dis-
tribution Service (DDS) [2] flavor and include Quality of
Service (QoS) concepts.

Initial development of RTCL has focused on two middle-
ware options underneath: the commercial publish/subscribe
middleware DDS from Real Time Innovations and a home-
grown shared-memory middleware. Development operat-
ing systems are Linux, Solaris, and VxWorks.

Benchmark Test Cases
Figure 1 below lists four fundamental cases representing
communication patterns relevant to our application.

1-to-n: single sender, multiple
receivers, single topic

n-to-1: single receiver, multiple
senders, separate topics

m-to-n: multiple receivers, mul-
tiple senders

pipeline: messages sent from
task to task
Figure 1: Fundamental communication patterns.

The first two cases are actually special cases of the more
general third case, but they are listed separately because
they commonly occur in our application.

These fundamental patterns are tested over the following
parameters: message size, message rate, and number of
benchmarking application instances. For initial experi-
ments, parameter ranges of interest were message sizes up
to tens of kilobytes, at rates up to several kHz, using up to a
dozen instances on up to eight computers.

The primary measured item is the time from the start of
transmission to the end of reception. Though we call it “la-
tency”, this is really the latency plus the time to transmit the
message content, also known as transmission delay. For
our purpose this is sufficient and also more relevant to the
applications.

Benchmarking Application
An application has been developed for benchmarking, as
well as verifying, the RTCL middleware, known as ICA for
Instrumented Communications App. Test cases involve
running two or more instances of ICA on one or more com-
puters according to a configuration described in a test con-
figuration file. Individual process instances of ICA have
one or more publishers and subscribers. Publishers send
messages of a specified size at a specified rate on a speci-
fied topic. Subscribers receive messages on a specified
topic and may republish them on another.

Measurements of the time to send a message are done using
timestamps in the message and can be either one-way,
where the subscriber computes the time, or two-way where
a round-trip time is computed by the original publisher
upon receiving a republished copy of the original message
(the time to copy the contents is not included in the meas-
urement). When a publisher and subscriber are on different
computers, special timing hardware is used for one-way
timing. ICA processes write histograms of the measure-
ments to files at the conclusion of test runs.

Results
The initial test platform was Linux, admittedly not a real-
time operating system (RTOS) but nonetheless a suitable
starting point for "soft" real-time experiments and software
development. For real-time measurements, the middleware
and test application are built on other Unix-like OSes with
real-time capabilities, such as Solaris (or real-time Linux
variants), or on dedicated RTOSes such as VxWorks; re-
sults from these will be shown in the presentation.

An example of Linux results is shown in the graphs, which
summarize a set of tests of the 1-to-n case, over different
numbers of subscriber instances (x-axis) and using several
message sizes (colored curves). Each instance was on a
separate Linux server, connected via gigabit Ethernet. The
underlying middleware was RTI DDS, using reliable deliv-
ery, multicast for the primary publisher, and unicast for the
return publishers needed for round-trip timing (so this really
is the primary 1-to-n case plus an n-to-1 case created by the
responses). The test was run at 200 Hz, and the measured
latencies are shown on the y-axis in microseconds.

Figure 2: Median measured latencies.

Note that 200 Hz corresponds to 5000 microseconds be-
tween published messages. Figure 2 shows median laten-
cies and Figure 3 shows the maximum measured latencies.

Figure 3: Maximum measured latencies.

Looking at Figure 4, which shows the histogram of all the
latencies from the case with 32-kilobyte messages and four
subscribers, we see that the majority of messages are clus-
tered around the median but that there are also a significant
number of outliers (see detail). Note that the histogram’s
maximum bin includes measurements greater than 4999.

Figure 4: Latency histogram for 1-to-4 32-kilobyte messages.

The ICA can be tested in configurations that are representa-
tive of particular systems to assist system design. The ex-
ample results shown here could be analyzed to assess the
suitability of RTCL using DDS on a Linux cluster, for in-
stance. From these results it could be concluded that using
smaller messages or smaller numbers of subscribers is sup-
ported adequately, though the relatively high maximum la-
tency observed in the 1-to-2 case with 128 byte messages
suggests variability that might warrant further investigation.
However, if larger messages were needed, this shows that
32-kilobyte messages to four or more subscribers will
sometimes fall behind in this configuration, so further test-
ing with other configurations would be needed to find an
adequate solution in that case.

References
[1] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The

Many Faces of Publish/Subscribe”, ACM Computing Surveys,
Vol. 32, No. 2, June 2003, pp. 114-131.

[2] “Data Distribution Service for Real-time Systems”, specifica-
tion from Object Management Group (omg.org).

max bin
is 4999

detail

