
Synthesizing Parallel Programming
Models for Asymmetric Multi-core Systems

Dimitrios S. Nikolopoulos and Kirk W. Cameron
Department of Computer Science

Virginia Tech
dsn@cs.vt.edu, cameron@cs.vt.edu

Asymmetric multi-core processors integrating conventional
with customized accelerator cores, have exhibited the
potential to provide unprecedented performance for data-
intensive applications. Although significant effort has been
invested in parallel programming models that exploit a
single form of parallelism, programming models that
synthesize polymorphic parallelism and runtime systems
that exploit multiple dimensions of concurrency and
heterogeneity in parallel execution are rare. As a
consequence, software developers lack both the
programming abstractions and the methodologies for
synthesizing programming models for polymorphic
parallelism. This deficit may render software unable to
exploit asymmetric multi-core processors, since
polymorphic parallelism is essential to balance the supply
of computation from conventional cores with the demand
from accelerators [1]. Our research on runtime performance
modeling and scheduling of dynamic polymorphic
parallelism on the Cell Broadband Engine [1,2,3], derives
a methodology for synthesizing polymorphic programming
models for explicitly parallel programs on-the-fly. The
proposed methodology off-loads the tasks of mapping
algorithmic parallelism to the architecture and adapting
parallel execution to the available resources from the
programmer to the runtime environment. In addition to
mapping and adaptation, the runtime environment performs
a synthesis of execution, communication and
synchronization schemes to balance parallel execution
across the cores and the interconnection network of the
processor. The runtime system leverages two
complementary system software modules. The first module
features an event-driven scheduler (EDTLP), which unifies
the scheduling of different forms of algorithmic parallelism
(e.g. task, data, pipeline), and systemic parallelism (e.g.

concurrent DMA and communication requests), across the
PPE and SPEs. The second module comprises a
performance modeling and prediction framework, coined
MMGP, which derives performance predictions on all
feasible PPE/SPE core configurations and thereby drives
the event-driven scheduler to near-optimal schedules. A
snapshot of our results, illustrated in Figure 1, indicates
the accuracy of MMGP in identifying the optimal forms
and degrees of concurrency in realistic parallel applications
on the Cell BE. Figure 1 illustrates the performance of two
algorithms for parallel phylogenetic tree construction
(RAxML and PBPI), along with the optimal operating
points of these codes on an IBM BladeCenter QS20.
REFERENCES
[1]. Filip Blagojevic, Dimitrios S. Nikolopoulos,
Alexandros Stamatakis, and Christos D. Antonopoulos.
Dynamic Multi-grain Parallelization on the Cell
Broadband Engine. Proc. of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, pp. 90-100, San Jose, CA, March 2007.
[2]. Filip Blagojevic, Alexandros Stamatakis, Christos D.
Antonopoulos, and Dimitrios S. Nikolopoulos. RAxML-
CELL: Parallel Phylogenetic Tree Construction on the
Cell Broadband Engine. Proc. of the 21st International
Parallel and Distributed Processing Symposium, Long
Beach, CA, March 2007.
[3]. Filip Blagojevic, Xizhou Feng, Kirk Cameron, and
Dimitrios S. Nikolopoulos. Modeling Multi-Grain
Parallelism on Heterogeneous Multi-core Processors: A
Case Study of the Cell BE. Proc. of the 2008 International
Conference on High-Performance Embedded Architectures
and Compilers, Göteborg, Sweden, February 2008.

Figure 1: Actual and predicted execution times of PBPI (left) and RAxML (right) with all feasible core configurations on
an IBM BladeCenter QS20, with two Cell BEs. Each configuration is represented as a pair (x, y), where x is the number
of PPE threads and y the number of SPEs activated to execute the programs in the given configuration. MMGP accurately
locates the optimal operating points of the benchmarks, despite the complexity of the layered parallel architecture of the
blade. The prediction error of MMGP never exceeds 10% and typically lies between 1% and 5%.

