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Asymmetric multi-core processors integrating conventional 
with customized accelerator cores, have exhibited the 
potential to provide unprecedented performance for data-
intensive applications. Although significant effort has been 
invested in parallel programming models that exploit a 
single form of parallelism, programming models that 
synthesize polymorphic parallelism and runtime systems 
that exploit multiple dimensions of concurrency and 
heterogeneity in parallel execution are rare. As a 
consequence, software developers lack both the 
programming abstractions and the methodologies for 
synthesizing programming models for polymorphic 
parallelism. This deficit may render software unable to 
exploit asymmetric multi-core processors, since 
polymorphic parallelism is essential to balance the supply 
of computation from conventional cores with the demand 
from accelerators [1]. Our research on runtime performance 
modeling and scheduling of dynamic polymorphic 
parallelism on the Cell Broadband Engine [1,2,3], derives 
a methodology for synthesizing polymorphic programming 
models for explicitly parallel programs on-the-fly. The 
proposed methodology off-loads the tasks of mapping 
algorithmic parallelism to the architecture and adapting 
parallel execution to the available resources from the 
programmer to the runtime environment. In addition to 
mapping and adaptation, the runtime environment performs 
a synthesis of execution, communication and 
synchronization schemes to balance parallel execution 
across the cores and the interconnection network of the 
processor. The runtime system leverages two 
complementary system software modules. The first module 
features an event-driven scheduler (EDTLP), which unifies 
the scheduling of different forms of algorithmic parallelism 
(e.g. task, data, pipeline), and systemic parallelism (e.g. 

concurrent DMA and communication requests), across the 
PPE and SPEs. The second module comprises a 
performance modeling and prediction framework, coined 
MMGP, which derives performance predictions on all 
feasible PPE/SPE core configurations and thereby drives 
the event-driven scheduler to near-optimal schedules. A 
snapshot of our results, illustrated in Figure 1, indicates 
the accuracy of MMGP in identifying the optimal forms 
and degrees of concurrency in realistic parallel applications 
on the Cell BE. Figure 1 illustrates the performance of two 
algorithms for parallel phylogenetic tree construction 
(RAxML and PBPI), along with the optimal operating 
points of these codes on an IBM BladeCenter QS20.  
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Figure 1: Actual and predicted execution times of PBPI (left) and RAxML (right) with all feasible core configurations on 
an IBM BladeCenter QS20, with two Cell BEs. Each configuration is represented as a pair (x, y), where x is the number 
of PPE threads and y the number of SPEs activated to execute the programs in the given configuration. MMGP accurately 
locates the optimal operating points of the benchmarks, despite the complexity of the layered parallel architecture of the 
blade. The prediction error of MMGP never exceeds 10% and typically lies between 1% and 5%. 




