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Introduction1 
Streaming computation models have received considerable 
attention recently as a convenient way to reason about and 
develop data intensive applications.  Example applications 
include signal processing, cryptography, biosequence 
analysis and graphics.  Associated streaming languages 
have been proposed (e.g., [1,2]) and some are now in 
production use. 

Embedded applications are often streaming in nature and 
are frequently deployed on hybrid architectures that include 
multiple types of computing resources, such as chip 
multiprocessors and FPGAs.  Such architectures can 
potentially exploit the unique features of a resource and can 
exploit pipelining and parallelism to achieve higher overall 
performance. However, applications are difficult to design, 
analyze and deploy on real hybrid systems. 

Lee [3] has argued that coordination languages represent a 
good mechanism for reasoning about concurrency and 
representing dependence between computational 
components. In the hybrid system domain, Franklin et 
al. [4] have proposed, and subsequently implemented, the X 
coordination language.  Common to both of the above is the 
use of data flow semantics between “kernels” or “blocks” 
that specify undecomposable computations that are to be 
mapped to  individual computing resources (e.g., processor, 
FPGA, DSP, etc.).  Unlike some streaming languages, the 
computations associated with an X block may be expressed 
in one of a number of languages, including standard 
languages such as C/C++ and hardware description 
languages such as VHDL or Verilog.  This removes the 
necessity for learning an entirely new language for 
computational kernels.  

Once blocks are defined and their interactions expressed in 
X, the development environment permits exploration of 
performance issues [5] and easy redefinition of block 
interactions.  Once an X description has been completed, 
the blocks and interconnections must be mapped to 
appropriate and available hardware resources and, finally, 
deployed (e.g., downloading the block binaries and bitfiles 
to the actual resources).  Here, we describe the capabilities 
of X-Dep, the deployment tool for applications authored in 
the X language.  X-Dep is a part of the Auto-Pipe 
application development environment [4]. 

Example Application: Sorting 

 

                                                

As an example application, we will use sorting to illustrate 
the capabilities of the X-Dep tool.  A common approach to 
sorting is to first sort groups of records that are 
subsequently merged in a later step.  This approach exploits 
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record locality, both on chip multiprocessors and on 
FPGAs.  Sorting can be expressed as a streaming 
application as shown in Figure 1. 
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Figure 1: Sorting application expressed as a stream. 

The sort block sorts fixed size groups of records and the 
split block routes successive groups out of sort into 
distinct inputs to merge, which performs a merge sort.  
Queues are shown between split and merge, however, 
they actually exist along all of the arcs. The X language 
source code for the sorting application of Figure 1 follows: 

block app_1 { 
    read_records  input; 
    sort_groups   sort; 
    split_groups  split; 
    merge_groups  merge; 
    write_records output; 
 
    input -> sort -> split; 
    split.a -> merge.a; 
    split.b -> merge.b; 
    merge -> output; 
}; 

Once the block labels have been declared, the topology of 
the streaming application is described.  In addition to the 
above X code, one must also implement each of the block 
types (read_records, sort_groups, etc.) in a 
language supported by the resources on which it is a 
candidate to be deployed (e.g., C/C++ for processors, 
VHDL or Verilog for FPGAs). 

Alternative Streaming Sort Application 
If multiple resources are available so that separate copies of 
the sort block can execute in parallel, an alternative 
streaming topology might be considered (Figure 2).   
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Figure 2: Alternative sort application. 



 

Note that in this case, blocks sort_1 and sort_2 are 
operating on independent groups of records. The X source 
code for this alternative approach is shown below. 

block app_2 { 
    ... 
    sort_groups   sort_1, sort_2; 
    ... 
    input -> split; 
    split.a -> sort_1 -> merge.a; 
    split.b -> sort_2 -> merge.b; 
    merge -> output; 
}; 

Note the limited differences in the expressions of these two 
applications.  Moving from one application to the other 
with X is straightforward (as it should be for this simple a 
transformation).  When the topology is not expressed in a 
high-level coordination language, this type of application 
transformation is often complicated and error-prone. 

Deployment on Hybrid Architectures 
To illustrate deployment of an X described system on a 
hybrid architecture, we use a system available in our 
laboratory.  The system consists of 4 processor cores 
(2 dual-core AMD Opterons) and a Xilinx Virtex-II 6000 
attached via the PCI-X bus (on an Avnet board).  These 
resources are declared as follows: 

resource proc[4] is C_x86; 
resource FPGA is HDL_Avnet; 

The resource type C_x86 indicates that the blocks mapped 
to this resource type are expressed in C/C++ for an x86 
processor core.  The resource type HDL_Avnet similarly 
indicates that blocks mapped to this resource type are 
expressed in Verilog or VHDL for our Avnet board. 

At this point, blocks from the application can be mapped to 
the available resources. In the following mapping (for the 
application of Figure 1), the blocks are divided across the 
available processors, leaving the FPGA unused. 

map proc[1] = {app_1.input}; 
map proc[2] = {app_1.sort}; 
map proc[3] = {app_1.split, 
               app_1.merge}; 
map proc[4] = {app_1.output}; 

A second candidate mapping is to put both file I/O blocks 
on one processor core, the sort block on the FPGA, and 
the split and merge blocks on a second processor core.  
This leaves two processor cores available for other tasks. 

map proc[1]={app_1.input, app_1.output}; 
map proc[2]={app_1.split, app_1.merge}; 
map FPGA   ={app_1.sort}; 

With the system we have developed, the deployment of 
compiled block computational code and all data delivery 
across block interfaces is automatically handled by the 
development environment.  In the first mapping above, 
records to be sorted are delivered from processor core 1 to 
processor core 2 without any additional specification 

required on the part of the developer (here using the shared 
memory system).  If the two processors were connected via 
a network, the necessary communications protocols would 
be invoked for data delivery across the network. 

In moving from the first to the second mapping, the 
developer has indicated that records to be sorted must now 
be delivered from processor core 1 to the FPGA.  Here, the 
data is moved across the PCI-X bus to the FPGA board, 
again without any additional specification required on the 
part of the developer. 

A third example mapping is for the alternative sort topology 
of Figure 2.  Here, I/O is mapped to one processor core, 
each sort block is assigned to a separate processor core, and 
split and merge are assigned to the FPGA. 

map proc[1]={app_2.input, app_2.output}; 
map proc[2]={app_2.sort_1}; 
map proc[3]={app_2.sort_2}; 
map FPGA   ={app_2.split, app_2.merge}; 

Again, data delivery between processor cores and to/from 
the FPGA is automatically handled by the development 
environment. 

Conclusions 
We have presented an illustrative example of the 
capabilities of the X language and the Auto-Pipe 
development environment.  The system is capable of 
describing, mapping, and deploying streaming applications 
to hybrid architectures.  In addition to the sorting 
application described, several additional applications have 
been and are being authored in X. These include encryption 
(3DES), an astrophysics signal processing pipeline (from 
the VERITAS project [6]), and an N-body simulation 
application.  While the current system is limited to 
processors and FPGAs as compute resources, we are 
planning extensions to support graphics processors, DSPs, 
heterogeneous chip multi-processors (e.g., Cell), etc. in the 
future. 
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