
Automatic Deployment of Streaming Applications on Hybrid Architectures
Roger D. Chamberlain and Mark A. Franklin

Dept. of Computer Science and Engineering, Washington University in St. Louis
{roger,jbf}@wustl.edu

Introduction1
Streaming computation models have received considerable
attention recently as a convenient way to reason about and
develop data intensive applications. Example applications
include signal processing, cryptography, biosequence
analysis and graphics. Associated streaming languages
have been proposed (e.g., [1,2]) and some are now in
production use.

Embedded applications are often streaming in nature and
are frequently deployed on hybrid architectures that include
multiple types of computing resources, such as chip
multiprocessors and FPGAs. Such architectures can
potentially exploit the unique features of a resource and can
exploit pipelining and parallelism to achieve higher overall
performance. However, applications are difficult to design,
analyze and deploy on real hybrid systems.

Lee [3] has argued that coordination languages represent a
good mechanism for reasoning about concurrency and
representing dependence between computational
components. In the hybrid system domain, Franklin et
al. [4] have proposed, and subsequently implemented, the X
coordination language. Common to both of the above is the
use of data flow semantics between “kernels” or “blocks”
that specify undecomposable computations that are to be
mapped to individual computing resources (e.g., processor,
FPGA, DSP, etc.). Unlike some streaming languages, the
computations associated with an X block may be expressed
in one of a number of languages, including standard
languages such as C/C++ and hardware description
languages such as VHDL or Verilog. This removes the
necessity for learning an entirely new language for
computational kernels.

Once blocks are defined and their interactions expressed in
X, the development environment permits exploration of
performance issues [5] and easy redefinition of block
interactions. Once an X description has been completed,
the blocks and interconnections must be mapped to
appropriate and available hardware resources and, finally,
deployed (e.g., downloading the block binaries and bitfiles
to the actual resources). Here, we describe the capabilities
of X-Dep, the deployment tool for applications authored in
the X language. X-Dep is a part of the Auto-Pipe
application development environment [4].

Example Application: Sorting

As an example application, we will use sorting to illustrate
the capabilities of the X-Dep tool. A common approach to
sorting is to first sort groups of records that are
subsequently merged in a later step. This approach exploits

This research is supported by NSF grant CCF-0427794.

record locality, both on chip multiprocessors and on
FPGAs. Sorting can be expressed as a streaming
application as shown in Figure 1.

input sort split merge output

read_
records

write_
recordssort_groups split_groups

merge_
groups
a

b

a

b

Figure 1: Sorting application expressed as a stream.

The sort block sorts fixed size groups of records and the
split block routes successive groups out of sort into
distinct inputs to merge, which performs a merge sort.
Queues are shown between split and merge, however,
they actually exist along all of the arcs. The X language
source code for the sorting application of Figure 1 follows:

block app_1 {
 read_records input;
 sort_groups sort;
 split_groups split;
 merge_groups merge;
 write_records output;

 input -> sort -> split;
 split.a -> merge.a;
 split.b -> merge.b;
 merge -> output;
};

Once the block labels have been declared, the topology of
the streaming application is described. In addition to the
above X code, one must also implement each of the block
types (read_records, sort_groups, etc.) in a
language supported by the resources on which it is a
candidate to be deployed (e.g., C/C++ for processors,
VHDL or Verilog for FPGAs).

Alternative Streaming Sort Application
If multiple resources are available so that separate copies of
the sort block can execute in parallel, an alternative
streaming topology might be considered (Figure 2).

input

sort_1

sort_2

merge output split

read_
records

sort_groups

split_groups
merge_
groups

write_
records

a

b

a

b

Figure 2: Alternative sort application.

Note that in this case, blocks sort_1 and sort_2 are
operating on independent groups of records. The X source
code for this alternative approach is shown below.

block app_2 {
 ...
 sort_groups sort_1, sort_2;
 ...
 input -> split;
 split.a -> sort_1 -> merge.a;
 split.b -> sort_2 -> merge.b;
 merge -> output;
};

Note the limited differences in the expressions of these two
applications. Moving from one application to the other
with X is straightforward (as it should be for this simple a
transformation). When the topology is not expressed in a
high-level coordination language, this type of application
transformation is often complicated and error-prone.

Deployment on Hybrid Architectures
To illustrate deployment of an X described system on a
hybrid architecture, we use a system available in our
laboratory. The system consists of 4 processor cores
(2 dual-core AMD Opterons) and a Xilinx Virtex-II 6000
attached via the PCI-X bus (on an Avnet board). These
resources are declared as follows:

resource proc[4] is C_x86;
resource FPGA is HDL_Avnet;

The resource type C_x86 indicates that the blocks mapped
to this resource type are expressed in C/C++ for an x86
processor core. The resource type HDL_Avnet similarly
indicates that blocks mapped to this resource type are
expressed in Verilog or VHDL for our Avnet board.

At this point, blocks from the application can be mapped to
the available resources. In the following mapping (for the
application of Figure 1), the blocks are divided across the
available processors, leaving the FPGA unused.

map proc[1] = {app_1.input};
map proc[2] = {app_1.sort};
map proc[3] = {app_1.split,
 app_1.merge};
map proc[4] = {app_1.output};

A second candidate mapping is to put both file I/O blocks
on one processor core, the sort block on the FPGA, and
the split and merge blocks on a second processor core.
This leaves two processor cores available for other tasks.

map proc[1]={app_1.input, app_1.output};
map proc[2]={app_1.split, app_1.merge};
map FPGA ={app_1.sort};

With the system we have developed, the deployment of
compiled block computational code and all data delivery
across block interfaces is automatically handled by the
development environment. In the first mapping above,
records to be sorted are delivered from processor core 1 to
processor core 2 without any additional specification

required on the part of the developer (here using the shared
memory system). If the two processors were connected via
a network, the necessary communications protocols would
be invoked for data delivery across the network.

In moving from the first to the second mapping, the
developer has indicated that records to be sorted must now
be delivered from processor core 1 to the FPGA. Here, the
data is moved across the PCI-X bus to the FPGA board,
again without any additional specification required on the
part of the developer.

A third example mapping is for the alternative sort topology
of Figure 2. Here, I/O is mapped to one processor core,
each sort block is assigned to a separate processor core, and
split and merge are assigned to the FPGA.

map proc[1]={app_2.input, app_2.output};
map proc[2]={app_2.sort_1};
map proc[3]={app_2.sort_2};
map FPGA ={app_2.split, app_2.merge};

Again, data delivery between processor cores and to/from
the FPGA is automatically handled by the development
environment.

Conclusions
We have presented an illustrative example of the
capabilities of the X language and the Auto-Pipe
development environment. The system is capable of
describing, mapping, and deploying streaming applications
to hybrid architectures. In addition to the sorting
application described, several additional applications have
been and are being authored in X. These include encryption
(3DES), an astrophysics signal processing pipeline (from
the VERITAS project [6]), and an N-body simulation
application. While the current system is limited to
processors and FPGAs as compute resources, we are
planning extensions to support graphics processors, DSPs,
heterogeneous chip multi-processors (e.g., Cell), etc. in the
future.

References
[1] W. Thies, M. Karczmarek, and S.P. Amarasinghe, “StreamIt:

A Language for Streaming Applications,” in Proc. of 11th
Int’l Conf. on Compiler Construction, pp. 179-196, 2002.

[2] M.B. Gokhale, J.M. Stone, J. Arnold, and M. Kalinowski,
“Stream-Oriented FPGA Computing in the Streams-C High
Level Language,” in Proc. of IEEE Symp. on Field-
Programmable Custom Computing Machines, 2000.

[3] E.A. Lee. “The problem with threads,” IEEE Computer,
39(5):33-42, May 2006.

[4] M.A. Franklin, E.J. Tyson, J. Buckley, P. Crowley, and J.
Maschmeyer, “Auto-Pipe and the X Language: A Pipeline
Design Tool and Description Language,” in Proc. of Int’l
Parallel and Distributed Processing Symp., April 2006.

[5] S. Gayen, E.J. Tyson, M.A. Franklin, and R.D. Chamberlain,
“A Federated Simulation Environment for Hybrid Systems,”
in Proc. of Principles of Advanced and Distributed
Simulation Workshop, June 2007.

[6] T. Weekes et al. “VERITAS: the very energetic radiation
imaging telescope array system,” Astroparticle Physics,
17(2):221-243, May 2002.

