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Abstract 
In this paper, we propose an efficient memory allocation 
algorithm for Vector, Signal, and Image Processing Library 
(VSIPL) standard. This algorithm improves the efficiency of 
key VSIPL functions by exploiting fundamental properties 
of VSIPL objects during the allocation of memory. We 
implemented and tested our algorithm using the VSIPL 
reference implementation and measured results on 
representative VSIPL functions.  

Introduction 
Vector, Signal, and Image Processing Library (VSIPL) 
standard has been proposed to support portable, high 
performance application programs [1]. A first draft version 
1.2 for C language was proposed in 2006. The library 
provides many operations such as vector addition, matrix 
multiplication, and 2D-FFT.  

Input and output data for VSIPL functions are stored in 
“blocks” which represent areas in memory. Abstract data 
types such as “block” and “view” objects are provided in 
VSIPL for storing and accessing data, respectively [1]. In 
this paper, we optimized the memory allocation for these 
objects and measured the resulting performance 
improvement on VSIPL functions. In this abstract, results 
for matrix addition are presented. 

Platform 
In our experiments, we installed a reference implementation 
called the TASP_VSIPL_Core_Plus library [2] 
implemented by Randoll Judd, and used it as a baseline for 
our work. This implementation of VSIPL was developed 
for to provide a reference for the official specification and 
focused on functionality rather than performance. The 
hardware used in our experiments is an Intel Core 2 E6400 
dual-core machine running Redhat linux version 2.6.9-5. 
The machine runs at 2.1 GHz with 2 GB main memory. 

Memory allocations in VSIPL 
In a reference implementation of VSIPL, a malloc() is used 
to allocate memory for data objects. Whenever these 
objects are not needed, free() is called. However, these calls 
are expensive in terms of cycles since they are handled by 
the operating system (OS) and include overhead for 
management, bookkeeping, etc. As more and more calls are 
used, the heap space can be easily fragmented, making it 
harder to find space for malloc(). 

Therefore, it would be beneficial to have a memory 
allocation scheme tailored to VSIPL that avoids the 
overhead of malloc(). In this implementation, we put higher 

priority on overall function performance than the efficient 
use of memory, and therefore we chose a first-fit-based 
algorithm. 

Our memory allocation scheme exploits a few key 
properties of VSIPL data blocks, block objects, and view 
objects. Firstly, the block object and view object sizes are 
the same. Secondly, the data block, block object, and view 
object are created at the beginning of executions usually as 
a group. Finally, the objects live until the end of a program. 
In other words, data block, block object, and view object 
are not created and destroyed dynamically, but instead 
exhibit quasi-static behavior that can be exploited..  

Based on these observations, we devised the following 
algorithm for view object and block object: 

1. Allocate memory space for view objects and block 
objects separately. 

2. Allocate memory space for indexes for view and block 
objects. Each word or bit in the index corresponds to a 
view or a block in the view and block memory space. If 
an index is 1, it means the corresponding block or view is 
being used. Otherwise, the block and view space is not 
being used. 

3. The create operation for blocks or views, scans indexes 
from beginning to find an index that has zero value. Then,  
the start address of the corresponding block or view is 
returned. If a single bit is used for the index, 32 indexes 
can be checked at the same time by checking a single 32-
bit word. After this, there are extra steps to pinpoint the 
exact location of the empty space. 

4. The destroy operation for blocks or views calculates the 
corresponding index from the block address and the 
starting address of the reserved space for view and block 
objects. Then, the corresponding index is reset to zero. 
This freed space and corresponding index can be reused 
by the next create operation. 

By using this algorithm, the overall create and destroy cost 
is significantly reduced by avoiding general purpose and 
time-consuming memory allocation operations and instead 
using allocation functions that exploit the specific 
properties of blocks and views such as fixed sizes. 

We also implemented a second algorithm for variable sized 
data blocks. Since the sizes of input and output data for 
VSIPL operations are not fixed, a fast memory allocation 
scheme needs to be provided for variable data allocation. 
The following algorithm is used for variable data allocation 
for VSIPL. 



 

1. Allocate memory space for data blocks. 
2. Allocate memory space for indexes for data block. Each 

index is a structure containing three fields: a) a valid bit. 
If the valid bit is 1, it means the index is being used. 
Otherwise, the index is not being used. b) start field that 
contains start address of the corresponding data block. c) 
an end field that contains last address of the 
corresponding data block. 

3. When a new data block needs to be allocated, the indexes 
are scanned one by one from the beginning. When an 
index whose valid field is zero is found, it checks the 
available space by calculating the difference between the 
start filed of the next index and the end field of the 
previous index. If the size is larger than the requested 
size, then, the index is updated such that the valid field is 
set to 1 and start and end fields are updated. Then, the 
start address is returned. 

4. If a data block is freed, the index is scanned to find an 
index that has start address matching the start address of 
the space to be freed. If found, the valid field of the index 
is reset to zero. 

Implementation Results 
Fig. 1 shows the number of cycles for each operation for 8 
by 8 matrix addition. The figure shows that the numbers of 
cycles are reduced for most of the operations. The most 
reduction is in blockbind operation where 5.6 times of 
speedup was achieved.  

The big saving in the blockbind is somewhat compensated 
for by increased number of cycles at mbind stage where the 
number of cycles is actually increased by 17.6K cycles. The 
increased number of cycles is due to the fact that the data 
had to be used in the mbind stage. To use the data in mbind 
stage, the data are moved from memory to processor. In the 
straightforward algorithm, the data is moved to cache in the 
blockbind stage. However, the increased number of cycles 
in mbind stage is much less than the reduced number of 
cycles in blockbind stage, and as a total, the number of 
cycles is reduced significantly. 

Fig. 2 and Fig. 2 show the numbers of cycles for total and 
VSIPL object related operations  for matrix addition and 
matrix maximum, respectively using straightforward 
algorithm and new algorithm. The figures show that the 
numbers of cycles for VSIPL related operations are reduced  
significantly and remain constant for any matrix sizes. As 
the matrix sizes increases, the number of cycles for matrix 
addition and maximum are increased linearly and the 
relative difference becomes smaller. 

Conclusion 
In this paper, we developed an efficient algorithm for 
memory allocations in VSIPL. By exploiting the properties 
of VSIPL data objects such as blocks and views, the new 
algorithm achieved up to a factor of 3.5 speedup over 
straightforward algorithm. Since block and view objects are 
fundamental to VSIPL, the new algorithm can be used for 
any operation in VSIPL, and we expect to see similar 
performance improvements in other functions. 
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 Figure 1. Number of cycles for each operation for stack 

data allocation 

 
 Figure 2. Number of cycles for each operation for stack 

data allocation 

 
Figure 3. Number of cycles for each operation for heap 

data allocation 
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