

Optimization of Memory Allocation in VSIPL
Jinwoo Suh, Janice O. McMahon, Stephen P. Crago, and Dong-In Kang

University of Southern California – Information Sciences Institute
3811 N. Fairfax Drive, Suite 200, Arlington, VA 22203

{jsuh, jmcmahon, crago, dkang}@isi.edu

Abstract
In this paper, we propose an efficient memory allocation
algorithm for Vector, Signal, and Image Processing Library
(VSIPL) standard. This algorithm improves the efficiency of
key VSIPL functions by exploiting fundamental properties
of VSIPL objects during the allocation of memory. We
implemented and tested our algorithm using the VSIPL
reference implementation and measured results on
representative VSIPL functions.

Introduction
Vector, Signal, and Image Processing Library (VSIPL)
standard has been proposed to support portable, high
performance application programs [1]. A first draft version
1.2 for C language was proposed in 2006. The library
provides many operations such as vector addition, matrix
multiplication, and 2D-FFT.

Input and output data for VSIPL functions are stored in
“blocks” which represent areas in memory. Abstract data
types such as “block” and “view” objects are provided in
VSIPL for storing and accessing data, respectively [1]. In
this paper, we optimized the memory allocation for these
objects and measured the resulting performance
improvement on VSIPL functions. In this abstract, results
for matrix addition are presented.

Platform
In our experiments, we installed a reference implementation
called the TASP_VSIPL_Core_Plus library [2]
implemented by Randoll Judd, and used it as a baseline for
our work. This implementation of VSIPL was developed
for to provide a reference for the official specification and
focused on functionality rather than performance. The
hardware used in our experiments is an Intel Core 2 E6400
dual-core machine running Redhat linux version 2.6.9-5.
The machine runs at 2.1 GHz with 2 GB main memory.

Memory allocations in VSIPL
In a reference implementation of VSIPL, a malloc() is used
to allocate memory for data objects. Whenever these
objects are not needed, free() is called. However, these calls
are expensive in terms of cycles since they are handled by
the operating system (OS) and include overhead for
management, bookkeeping, etc. As more and more calls are
used, the heap space can be easily fragmented, making it
harder to find space for malloc().

Therefore, it would be beneficial to have a memory
allocation scheme tailored to VSIPL that avoids the
overhead of malloc(). In this implementation, we put higher

priority on overall function performance than the efficient
use of memory, and therefore we chose a first-fit-based
algorithm.

Our memory allocation scheme exploits a few key
properties of VSIPL data blocks, block objects, and view
objects. Firstly, the block object and view object sizes are
the same. Secondly, the data block, block object, and view
object are created at the beginning of executions usually as
a group. Finally, the objects live until the end of a program.
In other words, data block, block object, and view object
are not created and destroyed dynamically, but instead
exhibit quasi-static behavior that can be exploited..

Based on these observations, we devised the following
algorithm for view object and block object:

1. Allocate memory space for view objects and block
objects separately.

2. Allocate memory space for indexes for view and block
objects. Each word or bit in the index corresponds to a
view or a block in the view and block memory space. If
an index is 1, it means the corresponding block or view is
being used. Otherwise, the block and view space is not
being used.

3. The create operation for blocks or views, scans indexes
from beginning to find an index that has zero value. Then,
the start address of the corresponding block or view is
returned. If a single bit is used for the index, 32 indexes
can be checked at the same time by checking a single 32-
bit word. After this, there are extra steps to pinpoint the
exact location of the empty space.

4. The destroy operation for blocks or views calculates the
corresponding index from the block address and the
starting address of the reserved space for view and block
objects. Then, the corresponding index is reset to zero.
This freed space and corresponding index can be reused
by the next create operation.

By using this algorithm, the overall create and destroy cost
is significantly reduced by avoiding general purpose and
time-consuming memory allocation operations and instead
using allocation functions that exploit the specific
properties of blocks and views such as fixed sizes.

We also implemented a second algorithm for variable sized
data blocks. Since the sizes of input and output data for
VSIPL operations are not fixed, a fast memory allocation
scheme needs to be provided for variable data allocation.
The following algorithm is used for variable data allocation
for VSIPL.

1. Allocate memory space for data blocks.
2. Allocate memory space for indexes for data block. Each

index is a structure containing three fields: a) a valid bit.
If the valid bit is 1, it means the index is being used.
Otherwise, the index is not being used. b) start field that
contains start address of the corresponding data block. c)
an end field that contains last address of the
corresponding data block.

3. When a new data block needs to be allocated, the indexes
are scanned one by one from the beginning. When an
index whose valid field is zero is found, it checks the
available space by calculating the difference between the
start filed of the next index and the end field of the
previous index. If the size is larger than the requested
size, then, the index is updated such that the valid field is
set to 1 and start and end fields are updated. Then, the
start address is returned.

4. If a data block is freed, the index is scanned to find an
index that has start address matching the start address of
the space to be freed. If found, the valid field of the index
is reset to zero.

Implementation Results
Fig. 1 shows the number of cycles for each operation for 8
by 8 matrix addition. The figure shows that the numbers of
cycles are reduced for most of the operations. The most
reduction is in blockbind operation where 5.6 times of
speedup was achieved.

The big saving in the blockbind is somewhat compensated
for by increased number of cycles at mbind stage where the
number of cycles is actually increased by 17.6K cycles. The
increased number of cycles is due to the fact that the data
had to be used in the mbind stage. To use the data in mbind
stage, the data are moved from memory to processor. In the
straightforward algorithm, the data is moved to cache in the
blockbind stage. However, the increased number of cycles
in mbind stage is much less than the reduced number of
cycles in blockbind stage, and as a total, the number of
cycles is reduced significantly.

Fig. 2 and Fig. 2 show the numbers of cycles for total and
VSIPL object related operations for matrix addition and
matrix maximum, respectively using straightforward
algorithm and new algorithm. The figures show that the
numbers of cycles for VSIPL related operations are reduced
significantly and remain constant for any matrix sizes. As
the matrix sizes increases, the number of cycles for matrix
addition and maximum are increased linearly and the
relative difference becomes smaller.

Conclusion
In this paper, we developed an efficient algorithm for
memory allocations in VSIPL. By exploiting the properties
of VSIPL data objects such as blocks and views, the new
algorithm achieved up to a factor of 3.5 speedup over
straightforward algorithm. Since block and view objects are
fundamental to VSIPL, the new algorithm can be used for
any operation in VSIPL, and we expect to see similar
performance improvements in other functions.

10

100

1000

10000

100000

1000000

ini
t

blo
ck

bin
d(x

3)

mbin
d(x

3)

blo
ck

ad
mit(x

3)
mad

d

mall
de

str
oy

(x3
)

fin
ali

ze

Previous
New

 Figure 1. Number of cycles for each operation for stack

data allocation

 Figure 2. Number of cycles for each operation for stack

data allocation

Figure 3. Number of cycles for each operation for heap

data allocation

References
[1] D. Schwartz, et. al, “VSIPL 1.2API,” http://www.vsipl.org,

April 2006.

[2] R. Judd, “TASP_VSIPL_Core_Plus library,”
http://www.vsipl.org/software, 2007.

