Low Latency Real-Time Computing on

Multiprocessor Systems Running Standard Linux

a multicore/multiprocessor standard Linux® kernel
can run applications requiring low latency and fast
interrupt response.

Through proper configuration and adherence to guidelines,

A system configured with SGI® React provides standard

Linux processes with real-time response using a standa

d

distribution kernel. No underlying real-time kernel reqt

ired.

Latency Effects

Interrupt latency—time to process an interrupt and

wake a sleeping thread.

— Time until handler invoked

— Time until application thread woken

— Time until application thread reaches userspace

Jitter—periods of cpu unavailability during thread
execution.

SGI poster
Sliced into 12 panels—each at 15"x 11”

Configuring the System

Once you have a distribution free from unexpected
atencies installed, configure the system by isolating
a subset of cpus from:

- Processes and threads not associated with
the application

- Kernel threads when possible
- Load Balancing Effects
- Interrupts not associated with the application

- Unnecessary timers not associated with
the application

- Effects of hyperthreading {turn hyperthreading off]

SGl's React configuration does this for you.
[k aloo sets up cpusets o aid in easily attaching
vour threads fo opecific cpuso.

Steps to achieving a low latency
Linux OS installation

nstall a distribution already suited to real-time work
such as an SGI React supported distro]

— The easiest way

— Vendor supported

OR

Work with the community and a vendor to test for
latency issues and get fixes to those issues into
their distribution
— Must check new release for new problems

and address those
— Vendor support

OR

Test for latency issues and modify a kernel with your

own patches for fixing latencies.

— Fixes likely need to be reapplied with each

new release

— Must check new release for new problems and
address those

— No vendor support

Configure a set of cpus for realtime use

Design and run your application following
recommended guidelines

Highest interrupt response times

4 CPU

system without React with React
noload 349.30 11.95
load 556.95 11.15

64 CPU

system without React with React
noload 484.95 10.50

load 545.35 18.75

Systems running sleslOspl 2.6.16.46-0.12 kernel with ProPack 5SP2 Itanium 2 processors 5,000,000 interrupts received per cpu
4 CPU system tests were done on 1000 MHz Madison Bl cpus with | cpu receiving interrupts. Load was 5-7 aim7/ tasks.
64 CPU system tests were done on 1500 MHz Madison Bl cpus with 28 cpus receiving interrupts. Load was 20-23 aim/ tasks.

Running Application Threads

Pin fo an isolated cpu [using ‘taskset’ or attach
to appropriate cpuset].

Lock memory [mlock/mlockall].
Avoid spending time in the kernel.
Use shared memory for IPC.

Avoid locking when possible.

Follow rules for avoiding priority inversion if locking
required.

Redirect application interrupt to same cpu running
interrupt handling thread.

Best with single thread per isolated cpu, but multi-
threading is fine if little or no time is spent in the
cernel and priority inversion is strictly avoided.

Create user level drivers where possible. Facilities
such as userspace PCl bus access, SGI ULI {User
Level Interrupts|, and SGI KBAR (Kernel Barriers]
can aid in this.

SGI FRS [Frame Rate Scheduler| allows you to schedule

threads periodically using an RTC clock or external

—

With the above strategy, non-preemptive thread

latencies can be kept within the 106 of usec range.
Jitter will otill be in the multi-usec range.

To further reduce jitter during periods of time critical
processing, cpu timer interrupts can be switched off for

ohort durations, allowing near jitter-free operation.
The SGI provided SGI-shield API allows you to do this
from program control.

nterrupts as a sync trigger, again eliminating the need
for kernel-level driver programming in certain instances.

© 2007 SGI. All rights reserved

