

DMAGIC: A High-level Partitioning Methodology for Discrete Signal
Transforms onto Distributed Hardware Architectures

Rafael Arce-Nazario, Manuel Jiménez, Domingo Rodríguez
Physics and Electronics Dept., University of Puerto Rico-Humacao / Electrical and Computer Eng. Dept., UPR-Mayagüez

ra_arce@uprh.edu, {mjimenez, domingo}@ece.uprm.edu

Introduction1

Discrete signal transforms (DSTs) represent a major energy,
performance, and area component in many applications,
which merits the study of specialized methods for
optimizing their implementation to modern computing
platforms. Large scale applications such as synthetic
aperture radar (SAR) imaging and chirp orthogonal
frequency division multiplexing (OFDM) require diverse
DSTs as their building blocks. Currently, DST
implementations to distributed dedicated hardware
platforms are of particular interest for two main reasons.
First, to attain superior performance, the size and
composition of DSTs frequently require implementation to
multi-chip architectures, such as multi-FPGA boards. ASIC
and FPGA implementations of DSTs have been shown to
operate many times faster than general-purpose or DSP
processor versions. However this performance gain is
achieved at the expense of high resource utilization.
Second, driven by concerns about power/performance in
ultra deep submicron CMOS technologies, there is a current
trend towards multi-core computing architectures.
Targeting these types of architectures demands a paradigm
shift in algorithm mapping onto hardware structures, as
well as tools to assist in the implementation process.

Several high-level partitioning strategies have been
proposed for distributed hardware architectures (DHAs)
which use generic local optimization techniques [1].
Although these techniques provide good results when
applied to common benchmarks, they miss out on alternate
considerations which become apparent with knowledge of
the algorithm's functionality. DSTs possess algorithmic
level properties that have been used to obtain effective
formulations for diverse computational architectures. For
instance, DSP code-generation techniques, such as SPIRAL
[2], explore alternate algorithmic formulations as part of
their search for optimized DST implementations on general
purpose processors. However, these strategies have not
been properly adapted to target distributed hardware
architectures.

In this paper, we present DMAGIC, a high-level
partitioning methodology for DSTs onto distributed
hardware architectures (DHAs) that takes advantage of
DST features at two levels of abstraction: the graph and
algorithmic levels. At the algorithmic level, an exploration
is conducted in search of equivalent transform formulations
that are more suitable for the target topology. At the graph
level, several DST-specific structural considerations have
been integrated into a partitioning heuristic, resulting in
faster graph partition solutions with no loss in quality. The

developed strategy integrates several processes which allow
the exploration of partitioning solutions at both abstraction
levels. This interaction allowed DMAGIC to obtain
improved partitioning results in terms of implementation
latency and runtime, as compared to generic hardware
partitioning strategies.

DMAGIC Methodology2

Figure 1 shows a conceptual map of the proposed
partitioning methodology, called DMAGIC (DST Mapping
using Algorithmic and Graph Interaction and Computation).
The inputs on the top are a DST specified as a Kronecker
Products Algebra (KPA) formulation, parameterized at least
by the resolution of its points, and a high-level specification
of the target architecture, which includes the number and
logic capacity of the devices and their connection topology.
The Kronecker to Graph process converts the algorithmic
formulation into a dataflow graph (DFG) whose nodes
denote functional primitives, i.e. small computational
components that are common throughout the formulation
and have been identified as efficient procedures on the
target devices. The dataflow graph is partitioned using a
deterministic graph partitioning/placement (P/P) heuristic
that has been enhanced to handle typical fast DST
structures. An area estimator determines the available
processing elements in each architectural device, based on
device capacity and the partition scheme. Latency
estimation is done using an As-Soon-As-Possible
scheduling heuristic, constrained by the resources estimated
by the area estimator.

High-level partition solution

KPA DST
Formulation

Architectural
Description

Kronecker
to DFG

Formulation
manipulator

Partition/
Placement

EstimatorsKPA
Formulation

DFG

Cost and
Indicators

Rule
Selection

Heuristic
Control

Hyper-
graph

Figure 1: Partitioning methodology.

Based on the P/P results of the current formulation,
factorization rules are used to generate a new formulation,
which, hopefully, improves the previous results. The
conversion/partitioning/reformulation process continues
until no considerable improvements are detected, at which
point the methodology outputs the best partition/placement
scheme encountered throughout the exploration.

Distributed Hardware Architecture

Figure 2 illustrates our target architecture model, referred to
as a Distributed Hardware Architecture (DHA). It consists
of k dedicated hardware devices (D0,..,Dk-1) with local
memory (M0,..,Mk-1), connected in a ring or linear array
topology with a crossbar serving as a global communication
channel. This architecture is modeled after common multi-
FPGA boards produced by vendors such as Annapolis
(Wildforce) and Gidel (PROC20KE), as well as high-end
academic reconfigurable systems such as the Berkeley
Emulation Engine 2 (BEE2). Furthermore, this architecture
can be considered scalable due to the number of
connections per device and its topological symmetry.

D
0

D
1

D
k-1

M
0

M
1

M
k-1

Crossbar

optional ring connection

Figure 2: Distributed Hardware Architecture

Graph partitioning tools

The software tools and heuristics developed for DMAGIC
have been influenced by our intention of using DST
properties throughout the partitioning process. For
instance, the graph partitioning/placement heuristic takes
advantage of DST regularity by constructing initial
solutions that are aware of the butterfly structure [3]. The
resource estimator achieves accurate area estimates by
targeting an intra-device architecture typical of folded DST
structures.

Moreover, several of these individual tools could be used to
further understand and research the properties of DSTs and
their hardware mapping. For example, the Kronecker to
DFG tool can be used to graphically visualize parallelisms
and partitioning opportunities in DST formulations.

Algorithmic exploration

A great number of algorithmic-level rules exist to
reformulate DSTs into functionally-equivalent /
computationally-distinct formulations. This is augmented
by the fact that the space of equivalent DST formulations
grows exponentially with DST size. Thus, an effective
formulation-space exploration heuristic is essential to our
proposed methodology. DMAGICs heuristic was
established after experimentally assessing the effect of
algorithmic reformulations, such as factorizations and
permutations, on partition quality

The initial assessment was performed on FFTs, due to their
high regularity and the availability of alternate formulations
[3]. Exhaustive formulations were generated for small-sized
FFTs using a small set of regularity-conserving rules and
partitioned using the DMAGIC graph partitioning
components. Analysis of the partitioning results helped
define a greedy polynomial-time heuristic that utilizes the
Cooley-Tukey factorization rule to deterministically
explore the space of equivalent FFT formulations. This

technique was later extended to DCTs by deriving a
Cooley-Tukey-like regular DCT algorithm [4].

Results and Discussion

Figure 3 shows the results of partitioning a range of FFT
and DCT sizes with DMAGIC vs. an implementation of a
previously published high-level partitioning methodology
[1]. The target architecture consisted of four FPGAs
connected in ring topology and crossbar. Neighbor and
crossbar communication, as well as arithmetic operations
latencies are as in [1]. Latency reduction of up to 34.1%
can be attributed to the exploration of alternative
formulations and to the DST considerations taken at the
graph level. Furthermore, significant runtime savings are
due to the fact that the formulation exploration algorithm
takes advantage of coarse DST representations, whereas [1]
relies on fully expanded dataflow graphs.

Latency vs. FFT size

FFT size
16 32 64 128 256 512

La
te

nc
y

(c
-s

te
ps

)
1

10

100

1000

10000
[1]
DMAGIC

Run time vs. FFT size

DCT size
16 32 64 128 256 512

R
un

-ti
m

e
(s

ec
on

ds
)

0.01

0.1

1

10

100

1000
[1]
DMAGIC

Latency vs. DCT size

FFT size
16 32 64 128 256

La
te

nc
y

(c
-s

te
ps

)

1

10

100

1000

10000

[1]
DMAGIC

Run time vs. DCT size

DCT size
16 32 64 128 256

R
un

-ti
m

e
(s

ec
on

ds
)

0.01

0.1

1

10

100

1000
[1]
DMAGIC

Figure 3: Results for FFT and DCT partitioning.

Conclusions and Future Work

Algorithmic-level reformulations affect the implementation
performance of DSTs to distributed hardware platforms.
Graph-level awareness of common DST structures helps
accelerate graph partitioning for these transforms.
DMAGIC uses DST features at both of these abstraction
levels to produce improved partitioning solutions in a time-
effective manner. Future work includes DMAGIC’s
extension to additional transforms, targeting current SoC
topologies, and multi-core processors, e.g. CELL BE.

References
 [1] V. Srinivasan, et al., “Fine-grained and coarse-grained

behavioral partitioning with effective utilization of memory
and design space exploration for multi-FPGA architectures”,
IEEE Trans. Very Large Scale Integr. Syst., vol 9, n 1, 2001.

[2] M. Püschel, et al., SPIRAL: Code Generation for DSP
Transforms, Proceedings of the IEEE, vol. 93, no. 2, 2005.

[3] R. Arce-Nazario, et al., “Functionally-aware Partitioning of
Discrete Signal Transforms for Distributed Hardware
Architectures”. Proceedings of the 49th MWSCAS. 2006.

[4] R. Arce-Nazario, et al., “Mapping of DCTs onto Distributed
Hardware Architectures”. Submitted to Journal of VLSI
Signal Processing. April 2007.

