NMP ST8 Dependable Multiprocessor

Precis Presentation

Dr. John R. Samson, Jr.

Honeywell Defense & Space Systems 13350 U.S. Highway 19 North Clearwater, Florida 33764 (727) 539 - 2449 john.r.samson@honeywell.com

High Performance Embedded Computing Workshop (HPEC) 18 – 20 September 2007

Dependable Multiprocessor

Softwar Multi-I Midd SEU Ir - de - au Multi-I - pa - co	re layered system SW OS, leware, APIs, FT algorithms mmunity tection tonomous, transparent recovery processing rallelism, redundancy mbinable modes <u>Hardware</u> Dimensions 10.6 x 12.2 x 24.0 in. (26.9 x 30.9 x 45.7 cm) Weight (Mass) ~ 61.05 lbs (27.8 kg) Power ~ 120 Watts (max)	 Description of technology advance Architecture and SW framework that enables COTS-based, high performance, scalable, cluster processing systems to operate in space - "SW-based SEU-tolerance enhancement" MPI-based for ease of porting applications from lab to space Adaptable to environment: radiation, mission, mode Validated models that can predict system performance in future missions & environments Validation Objectives Demonstrate delivered onboard computational throughput capability 10x – 100x more than any computer flying in space today
ST8 NMP "Carrier" Spacecraft	Power ~ 120 Watts (max)	 computer flying in space today Demonstrate onboard processing throughput density > 300 GOPS/watt

ST8 Dependable Multiprocessor Flight Experiment System

Applications of DM Technology

- DM technology is applicable to a wide range of missions
- enables heretofore previously unrealizable levels of science and autonomy processing
 - -- NASA science missions
 - -- landers/rovers
 - -- robotic servicing of satellites
 - -- ground/lunar/Mars-based systems
- CEV docking computers MKV video processor
- Unattended Airborne Vehicles (UAVs)
- Un-tethered Undersea Vehicles (UUVs)
- Stratolites
- Operationally Responsive Space (ORS)
- rad hard space applications

CY	'05	'06	'07		'08	'09	'10
Phase A - Concept Defn. Phase B		7/04 - \$0.5 TRL5/PD	M) R	NASA budget issues forced elimination of ST8 flight experiment per directive issued 8/3/07			
- Formulation Phase C/D - Implementation				R		ATLO La	unch
Phase E - Flight Exper.						\bigtriangleup	TRL7
Funding	\$1.2M	\$2.5M	\$4.0N	1	\$2.7M	_\$0.5M_	-\$0.3M -

DM Status

- Prototype DM SW transitioned to Honeywell Cat 4 software standard
 - prototype software tested for over a year
 - -- found and fixed minor bugs
 - -- no major problems uncovered
- Radiation testing of COTS flight components performed
 - performed proton testing and heavy ion testing of key parts
 - COTS components exhibited no catastrophic latch-up and sufficient SEU rates for flight experiment
- Flight experiment including command and telemetry defined
 - DM payload command and telemetry tables
 - operational experiment scenario
- Phase C/D flight testbed fabricated
- Prototype S/C interface SW developed and demonstrated
 - command processing
 - experiment data telemetry collection and reporting
 - demonstrated end-to-end command & telemetry loop with Orbital CTSIM (Command & Telemetry Simulator)
- Flight payload design finalized
 - electrical (including MIB)
 - structural
 - thermal
- Successful CDR, June 27, 2007
- Progressing toward TRL6 technology validation demonstration in FY '08
 - includes comprehensive SW fault injection experiments and system-level radiation beam tests

DM Phase C/D Flight Testbed

Honeywell

Summary & Conclusion

- Flying high performance COTS in space is a long-held desire/goal
 - Space Touchstone (DARPA/NRL)
 - Remote Exploration and Experimentation (REE) (NASA/JPL)

Honeywell

- Improved Space Architecture Concept (ISAC) (USAF)
- NMP ST8 DM project is bringing this desire/goal closer to reality
- DM technology independence has been demonstrated on wide variety of platforms
 - x86, PPC clusters
 - IBM Cell technology
 - FPGAs
 - VxWorks, Linux OS
- DM technology ease-of-use has been demonstrated
 - porting of GSFC Neural Basis Function (NBF) Synthetic Neural System (SNS) algorithms for autonomous rendezvous and docking
 - porting of NOAO Stellar Photometry application (QWPST)
- Multiple applications have been successfully ported to and demonstrated on DM testbeds
 - SAR, HSI, NBF-SNS, QWPST, Matrix Multiply, 2DFFT, LUD, K-means