
Parallel processing is not easy

Good schedules for parallel implementations of composite tasks
are hard to find.

User’s idea on
Parallel Computations

(e.g. STAP)

Executable file
for a given parallel computer

• Parallel implementation
• Mapping and scheduling
• Optimization for makespan

or throughput

Parallel processing can be made easy
with ALPS software framework

/*
This is a .cpp file of the partially
adaptive STAP methods that the
user had in mind.

This is optimized for minimum
latency or maximum throughput
on a given parallel machine.
*/

#include <alps.h>
...

Various STAP heuristics
constructed from ALPS building blocks

Modeling execution times of
basic building blocks under various configurations

Find optimal configuration that minimizes
overall makespan or maximizes throughput

ALPS CodeGen
User’s idea on

Parallel Computations
(e.g. STAP)

1. Task Graph

2. ALPS Benchmarker & Modeler

3. ALPS Scheduler

ALPS Library

User describes the algorithm using task graphs

ALPS software framework

determines the implementation parameters such as number of
processors for each task and return the executable code

Task Graph: PRI-overlapped STAP1

Target cube

Data cube

Steering vector

read
fft1

d

STAP
join

write

sp
lit

with

ove
rla

p

1. Measures of actual timings yi

for a set of input parameters
2. Candidate terms {gk

} such as the size of data cube or the size of
processor cube are generated based on the input parameters

3. Model coefficients xk

’s are found using least-squares

Ttask

≈ ∑(xk

gk

)

Solved incrementally by adding a best column to the model at a time.

ALPS Benchmarker and Modeler2

g1 g2 g3 gn-1 gn…

y1
y2

ym

x1
x2

xn

… …

2

2
minx

W(Ax-b) = minx2

2
W W

Ordinary least-squares
W = I

COV-weighted least-squares (BLUE estimator)
W = R-1/2

where R is the covariance matrix
one of the best, but requires lots of replications hence not practical

VAR-weighted least-squares
W = D-1/2

where D=diag(R)

INV-weighted least-squares
W = diag(1/b)

Used ordinary, VAR-weighted and INV-weighted least-squares with 5
replications for each measurement

minx

W(Ax-b) 2

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

From ordinary least-square

From weighted
least-square

10
%

 b
et

te
r

20
%

 b
et

te
r

30
%

 b
et

te
r

40
%

 b
et

te
r

7.5% error
from INV-weighted
least-square

26.6% error
from ordinary
least-square

ALPS Scheduler

Schedules tree-shaped task graphs

(Tree-shaped graphs) = (linear chains) + (joining nodes)

3
A

B

C

Data-parallelism
only [3]

Task-parallelism
preferred [4]

Other possibly
better schedules

t t t

processors

B
CA

B
C

A A

C
B

rather simple complicated

We consider both data-parallel (series) and task-parallel
(parallel) schedules for a joining node

Scheduling a joining node with two incoming arcs
Use dynamic programming considering two incoming arcs in series
and in parallel

Scheduling a joining node with more than two incoming arcs
1. Sort the incoming arcs based on makespan

when maximally parallelized
2. Schedule two incoming nodes at a time

A

B

C

D

10

8

5

1
A

C
D

B

10

8
5

1

Experiments on 8-node linux

cluster:

executable codes were generated by ALPS software framework

1 2 4 8
0

20

40

60

80

Makespan (sec)

0

10

20

30

Data-
parallelism
only [3]

Task-
parallelism
preferred [4]

Our
scheduling
algorithm

Makespan

(sec)

achieved

estimated

estimated achieved

Number of processors used

Makespan: achieved vs. estimated

Schedules found in makespan

minimization

Target cube (32x2048x32)

Data cube (32x2048x32)

Steering vector (32x1x32)

Data-parallelism only [3]

Task-parallelism preferred [4]

Our scheduling algorithm ~24 (sec)

~24 (sec)

~31 (sec)
P1

P8

P1

P8

P1

P8

0

0.05

0.1

Data-
parallelism
only [3]

Task-
parallelism
preferred [4]

Our
scheduling
algorithm

Throughput (1/sec)

1 2 4 80

0.05

0.1

0.12

Throughput (1/sec)

achieved

estimated

estimated

achieved

Throughput: achieved vs. estimated

Number of processors used

Schedules found in throughput maximization

Data-parallelism only [3] and our scheduling algorithm

Task-parallelism preferred [4]

~77 (sec)

~45 (sec)

Schedule on 1 processor replicated 8 times

Schedule on 4 processors replicated 2 times

Target cube (32x2048x32)

Data cube (32x2048x32)

Steering vector (32x1x32)

P1

P8

P1

P8

Conclusion

The schedules found by ALPS framework are as good as or often
better than those computed by other published algorithms

The relative error between the estimated and the achieved
makespan/throughput were around 10% confirming that the
modeled execution time is useful in predicting performance

Weighted least-squares produced estimates 20—30% better than
ordinary least-squares in terms of relative errors; may be useful
when modeling the unreliable timings.

Related works

Frameworks
[1]

PVL and

[2]

S3P

We use text version of task graph as front-end and source code
generation as back-end without users dealing with C++ code
We cover larger scheduling problem space (tree-structured
task graphs) than S3P.

Scheduling algorithms
[3] J. Subholk and G. Vondran: chain of tasks only
[4] D. Nicol, R. Simha, and A. Choudhary: s-p task graph, but task-

parallelism is preferred

(…

and many other works; refer to reference in the abstract)

References
[1] Eddie Rutledge and Jeremy Kepner, “PVL: An Object Oriented Software

Library for Parallel Signal Processing”, IEEE Cluster 2001.

[2] H. Hoffmann, J. V. Kepner, and R. A. Bond, “S3P: automatic, optimized
mapping of signal processing applications to parallel architectures,”

in
Proceedings of the Fifth Annual High-Performance Embedded Computing
(HPEC) Workshop, Nov. 2001.

[3] J. Subhlok and G. Vondran, “Optimal Use of Mixed Task and Data
Parallelism for Pipelined Computations”, Journal of Parallel and Distributed
Computing, vol. 60, 2000.

[4] D. Nicol, R. Simha, and A. Choudhary, “Optimal Processor Assignments for
a Class of Pipelined Computations”, IEEE Transaction on Parallel and
Distributed Systems, vol. 5(4), 1994.

	Parallel processing is not easy
	Parallel processing can be made easy �with ALPS software framework
	Task Graph: PRI-overlapped STAP
	ALPS Benchmarker and Modeler
	Slide Number 5
	Slide Number 6
	ALPS Scheduler
	We consider both data-parallel (series) and task-parallel (parallel) schedules for a joining node
	Experiments on 8-node linux cluster: �executable codes were generated by ALPS software framework
	Schedules found in makespan minimization
	Slide Number 11
	Schedules found in throughput maximization
	Conclusion
	Related works
	References

