
Parallel processing is not easy

Good schedules for parallel implementations of composite tasks 
are hard to find.

User’s idea on
Parallel Computations

(e.g. STAP)

Executable file
for a given parallel computer

• Parallel implementation
• Mapping and scheduling
• Optimization for makespan

or throughput



Parallel processing can be made easy 
with ALPS software framework

/* 
This is a .cpp file of the partially 
adaptive STAP methods that the 
user had in mind.

This is optimized for minimum 
latency or maximum throughput 
on a given parallel machine.
*/

#include <alps.h>
...

Various STAP heuristics
constructed from ALPS building blocks

Modeling execution times of
basic building blocks under various configurations

Find optimal configuration that minimizes
overall makespan or maximizes throughput

ALPS CodeGen
User’s idea on

Parallel Computations
(e.g. STAP)

1. Task Graph

2. ALPS Benchmarker & Modeler

3. ALPS Scheduler

ALPS Library



User describes the algorithm using task graphs

ALPS software framework

determines the implementation parameters such as number of 
processors for each task and return the executable code

Task Graph: PRI-overlapped STAP1
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1. Measures of actual timings yi

 

for a set of input parameters
2. Candidate terms {gk

 

} such as the size of data cube or the size of
processor cube are generated based on the input parameters

3. Model coefficients xk

 

’s are found using least-squares
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Solved incrementally by adding a best column to the model at a time.

ALPS Benchmarker and Modeler2
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Ordinary least-squares
W = I

COV-weighted least-squares (BLUE estimator)
W = R-1/2

 

where R is the covariance matrix
one of the best, but requires lots of replications hence not practical

VAR-weighted least-squares
W = D-1/2

 

where D=diag(R)

INV-weighted least-squares
W = diag(1/b)

Used ordinary, VAR-weighted and INV-weighted least-squares with 5 
replications for each measurement
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ALPS Scheduler

Schedules tree-shaped task graphs

(Tree-shaped graphs)    =    (linear chains)      +      (joining nodes)
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We consider both data-parallel (series) and task-parallel 
(parallel) schedules for a joining node

Scheduling a joining node with two incoming arcs
Use dynamic programming considering two incoming arcs in series 
and in parallel

Scheduling a joining node with more than two incoming arcs
1. Sort the incoming arcs based on makespan

 

when maximally parallelized
2. Schedule two incoming nodes at a time
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Experiments on 8-node linux

 
cluster: 

executable codes were generated by ALPS software framework
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Schedules found in makespan

 
minimization
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Schedules found in throughput maximization

Data-parallelism only [3] and our scheduling algorithm

Task-parallelism preferred [4]
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Conclusion

The schedules found by ALPS framework are as good as or often 
better than those computed by other published algorithms

The relative error between the estimated and the achieved 
makespan/throughput were around 10% confirming that the 
modeled execution time is useful in predicting performance

Weighted least-squares produced estimates 20—30% better than 
ordinary least-squares in terms of relative errors; may be useful 
when modeling the unreliable timings.



Related works

Frameworks
[1]

 

PVL and

 

[2]

 

S3P

We use text version of task graph as front-end and source code 
generation as back-end without users dealing with C++ code
We cover larger scheduling problem space (tree-structured 
task graphs) than S3P.

Scheduling algorithms
[3] J. Subholk and G. Vondran: chain of tasks only
[4] D. Nicol, R. Simha, and A. Choudhary: s-p task graph, but task-

 
parallelism is preferred

(…

 

and many other works; refer to reference in the abstract)
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