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The goal of this project is to automatically generate 
executable files for optimal parallel implementation of large 
computational tasks defined by their high-level algorithmic 
description. This goal is realized by a set of software tools 
called ALPS software framework. We present this 
framework in the context of a large signal processing 
application known as STAP. 
Space-Time Adaptive Processing (STAP) refers to adaptive 
radar processing algorithms to cancel interferences and 
detect a target. Considering the required number of 
operations and the real-time requirements of radar 
processing algorithms, parallel processing is inevitable. 
However, good schedules for parallel implementation of 
such algorithms are hard to find manually. For example, 
FFT operations in pre-STAP processing and weight 
applications in STAP require access to orthogonal 
dimensions of data cubes. This suggests that different 
memory layout, or different distribution among processors 
of data might lead to different performances. This makes 
mapping and scheduling STAP algorithm on parallel 
computers even more challenging. ALPS framework was 
designed to address this difficulty. 
 
ALPS Software Framework 

The foundation of ALPS software framework is ALPS 
library. In [1] [2], we showed that various STAP algorithms 
have many tasks in common but executed in different 
orders, and suggested that prototyping of these algorithms 
can be accelerated by providing these common tasks as a 
library that we call ALPS library. ALPS library handles 
three-dimensional data cube of channel × range × PRI, and 
is based on LAPACK, FFTW, and MPI. It provides all the 
computation and communications functions required for 
performing STAP algorithms on parallel computers. 

Within ALPS software framework, STAP algorithms are 
described by a  Directed Acyclic Graph (DAG), G=(V,E) 
where V is a set of nodes indicating functions provided by 
ALPS library, and E is a set of edges indicating 
dependencies between tasks. Each function in ALPS library 
is benchmarked on parallel computers and modeled to 
predict the execution time under various configurations. 
Then, based on this execution time models, ALPS scheduler 
finds schedules that minimize the latency for a single input 
instance or that maximizes the throughput for continuous 
input instances. Finally, ALPS code generator automatically 
generates C++ codes to be compiled and linked with ALPS 
library that follow this schedule. 

Algorithmic description 

An example of the task graph for PRI-staggered STAP 
method is shown in Figure 1 (the detailed algorithmic 

parameters are now shown for simplicity). In this method, 
the data cubes are broken along PRI dimension into several 
smaller-sized sub-cubes (split). Then, after performing one-
dimensional FFT along PRI dimension (fft), new cubes are 
built by taking ith PRI from all the sub-cubes (recube). For 
each of these smaller cubes, the optimal weights are formed 
and applied (STAP) to the target cube transformed in the 
same manner. 
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Figure 1: Task graph for PRI-staggered STAP algorithm 

 
Benchmarking and Modeling 

One possible approach to modeling the execution time of a 
function is to develop a theoretical model expressing the 
number of operations performed by the function [1]. 
However, developing theoretical models from 
implementation is not straight-forward and may not be 
doable manually. Moreover, the total number of operations 
is not always a good indicator of the execution time [4]. 
Instead of counting the number of operations performed by 
a task, we measure the actual execution time for the task for 
a range of input parameters characterizing the size of the 
task. The measurements are collected by ALPS 
benchmarker. From those measurements execution time 
models are built. 
To model the execution times of tasks, we use the 
incremental least-squares approach. Assuming that the 
execution time models can be approximated by linear 
combination of certain terms of input parameters, we 
generate candidate terms. In [5] [6], we selected terms and 
their weights by solving the least-squares problem, 

where the columns of  represent the 
candidate terms in the execution time model, and the 
elements of  are the means of repeated measurements. The 
measurements are divided into training and test sets. For 
measurements in a training set, we select terms, one at a 
time, so the squared sum of the model errors is minimized. 
Once the model is built, it is verified on the measurements 
saved as a test set. We pick the model giving the minimum 
mean of relative errors on the test set, 

 
where  is the ith row of ,  is the mean of 
measurements for the ith measurements, and N is the 
number of measurements in the test set. 



 

However, the ordinary least-squares approach finds models 
that minimize relative errors in large measurements but 
often these models are inaccurate for small measurements. 
In order to eliminate the bias towards large measurements 
and further reduce the mean of relative errors, we use 
weighted least-squares formulation,  
where W is a weight matrix. It turns out that the relative 
errors from the models generated by weighted least-squares 
are 20—30% smaller than those from the models generated 
by ordinary least-squares. 
 
Scheduling and Code generation 

Multi-processor scheduling problems are known to be NP-
complete [7]. Hence, many heuristic approached have been 
proposed. For example, list-based algorithms [8] [9] [10] 
improve the latency by minimizing the length of the critical 
path in a task graph. These algorithms can be applied to 
arbitrary directed acyclic task graphs, and also guarantee 
certain bound on the optimality of the schedules they 
generate [11]. However, depending on the problem, they 
can be trapped in a local optimum, and they are hard to 
extend to the throughput maximization problem. Dynamic 
programming is another technique widely used in 
scheduling to minimize latency or maximize throughput [5] 
[14][15][16], and generates optimal solutions if the task 
graph has layered structures. [12][13] and [17] address the 
scheduling problem for a broader class of task graphs such 
as series-parallel graphs, but they heavily rely on the 
convexity of the computation and communication cost, 
which is not always the case. 
ALPS scheduler extends the dynamic programming 
paradigm to tree-structured task graphs like the one shown 
in Figure 1. Our scheduling algorithm does not require the 
cost functions to be convex. It uses dynamic programming 
approach on linear task graph portion, but uses a list-based 
approach to schedule parallel branches of a task graph. It 
considers both data- and task-parallelism. As the scheduling 
algorithm covers much larger solution space than that of 
simple dynamic programming, the schedules found are as 
good as or often better than those computed by other 
published algorithms. It can be used in both latency 
minimization and throughput maximization. Once the 
schedule is found, ALPS code generator generates C++ 
code according to the schedule found. 
 
We demonstrate the performance of ALPS software 
framework on two different linux clusters with 8-node and 
16-node respectively, and compare it to the performance of 
other published scheduling algorithms. 
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