

ALPS: Software Framework for Scheduling Parallel Computations
with Application to Parallel Space-Time Adaptive Processing

Kyusoon Lee and Adam W. Bojanczyk
{kl224, awb8}@cornell.edu

School of Electrical and Computer Engineering
Cornell University, Ithaca, NY

The goal of this project is to automatically generate
executable files for optimal parallel implementation of large
computational tasks defined by their high-level algorithmic
description. This goal is realized by a set of software tools
called ALPS software framework. We present this
framework in the context of a large signal processing
application known as STAP.
Space-Time Adaptive Processing (STAP) refers to adaptive
radar processing algorithms to cancel interferences and
detect a target. Considering the required number of
operations and the real-time requirements of radar
processing algorithms, parallel processing is inevitable.
However, good schedules for parallel implementation of
such algorithms are hard to find manually. For example,
FFT operations in pre-STAP processing and weight
applications in STAP require access to orthogonal
dimensions of data cubes. This suggests that different
memory layout, or different distribution among processors
of data might lead to different performances. This makes
mapping and scheduling STAP algorithm on parallel
computers even more challenging. ALPS framework was
designed to address this difficulty.

ALPS Software Framework

The foundation of ALPS software framework is ALPS
library. In [1] [2], we showed that various STAP algorithms
have many tasks in common but executed in different
orders, and suggested that prototyping of these algorithms
can be accelerated by providing these common tasks as a
library that we call ALPS library. ALPS library handles
three-dimensional data cube of channel × range × PRI, and
is based on LAPACK, FFTW, and MPI. It provides all the
computation and communications functions required for
performing STAP algorithms on parallel computers.

Within ALPS software framework, STAP algorithms are
described by a Directed Acyclic Graph (DAG), G=(V,E)
where V is a set of nodes indicating functions provided by
ALPS library, and E is a set of edges indicating
dependencies between tasks. Each function in ALPS library
is benchmarked on parallel computers and modeled to
predict the execution time under various configurations.
Then, based on this execution time models, ALPS scheduler
finds schedules that minimize the latency for a single input
instance or that maximizes the throughput for continuous
input instances. Finally, ALPS code generator automatically
generates C++ codes to be compiled and linked with ALPS
library that follow this schedule.

Algorithmic description

An example of the task graph for PRI-staggered STAP
method is shown in Figure 1 (the detailed algorithmic

parameters are now shown for simplicity). In this method,
the data cubes are broken along PRI dimension into several
smaller-sized sub-cubes (split). Then, after performing one-
dimensional FFT along PRI dimension (fft), new cubes are
built by taking ith PRI from all the sub-cubes (recube). For
each of these smaller cubes, the optimal weights are formed
and applied (STAP) to the target cube transformed in the
same manner.

32*2048*32 (target)

READ FFT RECUBE

STAP WRITEJOIN

SPLIT

32*1*32 (steer)

32*2048*32 (train)

Figure 1: Task graph for PRI-staggered STAP algorithm

Benchmarking and Modeling

One possible approach to modeling the execution time of a
function is to develop a theoretical model expressing the
number of operations performed by the function [1].
However, developing theoretical models from
implementation is not straight-forward and may not be
doable manually. Moreover, the total number of operations
is not always a good indicator of the execution time [4].
Instead of counting the number of operations performed by
a task, we measure the actual execution time for the task for
a range of input parameters characterizing the size of the
task. The measurements are collected by ALPS
benchmarker. From those measurements execution time
models are built.
To model the execution times of tasks, we use the
incremental least-squares approach. Assuming that the
execution time models can be approximated by linear
combination of certain terms of input parameters, we
generate candidate terms. In [5] [6], we selected terms and
their weights by solving the least-squares problem,

where the columns of represent the
candidate terms in the execution time model, and the
elements of are the means of repeated measurements. The
measurements are divided into training and test sets. For
measurements in a training set, we select terms, one at a
time, so the squared sum of the model errors is minimized.
Once the model is built, it is verified on the measurements
saved as a test set. We pick the model giving the minimum
mean of relative errors on the test set,

where is the ith row of , is the mean of
measurements for the ith measurements, and N is the
number of measurements in the test set.

However, the ordinary least-squares approach finds models
that minimize relative errors in large measurements but
often these models are inaccurate for small measurements.
In order to eliminate the bias towards large measurements
and further reduce the mean of relative errors, we use
weighted least-squares formulation,
where W is a weight matrix. It turns out that the relative
errors from the models generated by weighted least-squares
are 20—30% smaller than those from the models generated
by ordinary least-squares.

Scheduling and Code generation

Multi-processor scheduling problems are known to be NP-
complete [7]. Hence, many heuristic approached have been
proposed. For example, list-based algorithms [8] [9] [10]
improve the latency by minimizing the length of the critical
path in a task graph. These algorithms can be applied to
arbitrary directed acyclic task graphs, and also guarantee
certain bound on the optimality of the schedules they
generate [11]. However, depending on the problem, they
can be trapped in a local optimum, and they are hard to
extend to the throughput maximization problem. Dynamic
programming is another technique widely used in
scheduling to minimize latency or maximize throughput [5]
[14][15][16], and generates optimal solutions if the task
graph has layered structures. [12][13] and [17] address the
scheduling problem for a broader class of task graphs such
as series-parallel graphs, but they heavily rely on the
convexity of the computation and communication cost,
which is not always the case.
ALPS scheduler extends the dynamic programming
paradigm to tree-structured task graphs like the one shown
in Figure 1. Our scheduling algorithm does not require the
cost functions to be convex. It uses dynamic programming
approach on linear task graph portion, but uses a list-based
approach to schedule parallel branches of a task graph. It
considers both data- and task-parallelism. As the scheduling
algorithm covers much larger solution space than that of
simple dynamic programming, the schedules found are as
good as or often better than those computed by other
published algorithms. It can be used in both latency
minimization and throughput maximization. Once the
schedule is found, ALPS code generator generates C++
code according to the schedule found.

We demonstrate the performance of ALPS software
framework on two different linux clusters with 8-node and
16-node respectively, and compare it to the performance of
other published scheduling algorithms.

References
 [1] James M. Lebak, Robert C. Durie and Adam W. Bojanczyk,

Toward A Portable Parallel Library for Space-Time Adaptive
Methods. Technical Report CTC96TR242, Cornell
University, June, 1996.

[2] James M. Lebak and Adam W. Bojanczyk, Design and
Performance Evaluation of a Portable Parallel Library for
Space-Time Adaptive Processing. IEEE Transactions on
Parallel and Distributed Systems, Vol. 11, No. 3, March 2000.

[3] L.E. Brennan and F.M. Staudaher, Subclutter Visibility

Demonstration. Technical Report RL-TR-92-21, Adaptive
Sensors Incorporated, March, 1992.

[4] Matteo Frigo and Steven G. Johnson, “FFTW: An Adaptive
Software Architecture for the FFT”, Proceedings of the
International Conference on Acoustics, Speech, and Signal
Processing, Vol. 3, 1998, pp. 1381—1384.

[5] Kyusoon Lee and Adam W. Bojanczyk, Performance
Modeling and Optimization Framework for Space-Time
Adaptive Processing. 3rd International Workshop on
Performance Modeling, Evaluation, and Optimization of
Parallel Distributed Systems, Santa Fe, New Mexico, USA,
26-30 April 2004.

[6] Kyusoon Lee and Adam W. Bojanczyk, “ALPS: A Software
Framework for Parallel Space-Time Adaptive Processing”,
PARA 2004, LNCS 3732, pp. 423—432, 2005.

[7] David Bernstein, Michael Rodeh, and Izidor Gertner, On the
complexity of scheduling problems for parallel/pipelined
machines. IEEE Transactions on Computers, 38, 9 (Sept.
1989), p. 1308—1313.

[8] Andrei Radulescu, Cristina Nicolescu, Arjan J.C. van
Gemund and Pieter P. Jonker, “CPR: Mixed Task and Data
Parallel Scheduling for Distributed Systems”, in Proceedings
of the 15th International Parallel and Distributed Processing
Symposium (IPDPS), San Francisco, April 2001, pp. 39—47.

[9] Frederic Suter, Frederic Desprez, and Henri Casanova, “From
Heterogeneous Task Scheduling to Heterogeneous mixed
Parallel Scheduling”, Euro-Par 2004, LNCS 3149, pp. 230—
238, 2004.

[10] Savina Bansal, Padam Kumar, and Kuldip Singh, “An
improved two-step algorithm for task and data parallel
scheduling in distributed memory machines”, Parallel
Computing 32 (2006) pp. 759—774.

[11] M.R. Garey and R.L. Graham, “Bounds for Multiprocessor
Scheduling with Resource Constraints”, SIAM Journal of
Computing, Vol. 4, No. 2, June 1975.

[12] G.N.Srinivasa Prasanna and Bruce R. Musicus, “Generalized
Multiprocessor Scheduling for Directed Acyclic Graphs”,
Proceedings of the 1994 conference on Supercomputing.

[13] Shankar Ramaswamy, Sachin Sapatnekart and Prithviraj
Benerjee, “A Framework for Exploiting Data and Functional
Parallelism on Distributed Memory Multicomputers”, IEEE
Transactions on Parallel and Distributed Systems, November
1997, Vol. 8, No. 11, pp. 1098—1116.

[14] Jaspal Subhlok and Gary Vondran, “Optimal Use of Mixed
Task and Data Parallelism for Pipelined Computations”,
Journal of Parallel and Distributed Computing, Vol. 60, 2000.

[15] H. Hoffman, J.V.Kepner, and R.A. Bond, “S3P: automatic,
optimized mapping of signal processing applications to
parallel architectures,” in Proceedings of the Fifth Annual
High-Performance Embedded Computing (HPEC) Workshop,
Nov. 2001.

[16] Eddie Rutledge and Jeremy Kepner, “PVL: An Object
Oriented Software Library for Parallel Signal Processing”,
IEEE Cluster 2001.

[17] David M. Nicol, Rahul Simha, and Alok N. Choudhary,
“Optimal Processor Assignment for Pipeline Computations”,
IEEE Transactions on Parallel and Distributed Systems, Vol.
5(4), 1994.

