
Advanced Programming and Execution Models 
for 

Future Multi-Core Systems 

Hans P. Zima 
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 

and 
Institute of Computational Science, University of Vienna, Austria 

High Performance Embedded Computing (HPEC) 
Workshop 

MIT Lincoln Laboratory, 18-20 September 2007



1 Introduction

2 Towards High-Level Programming Models for Parallelism 

3 Outline of a Generic Introspection Framework

4 Concluding Remarks

11 IntroductionIntroduction

22 Towards HighTowards High--Level Programming Models for Parallelism Level Programming Models for Parallelism 

33 Outline of a Generic Introspection FrameworkOutline of a Generic Introspection Framework

44 Concluding RemarksConcluding Remarks

Contents



Multicore: An Emerging Technology

The Problem: CMOS manufacturing technology approaches 
physical limits 
0power wall, memory wall, ILP wall
0Moore’s Law still in force (number of transistors on a chip increasing)

Solution: Multicore technology
0 improvements by multiple cores on a chip rather than higher frequency
0on-chip resource sharing provides cost and performance benefits

Multicore systems have been produced since 2000
0 IBM Power 4;Sun Niagara;AMD Opteron;Intel Xeon;…
0Quadcore systems by AMD, Intel recently introduced
0 IBM/Sony/Toshiba:  Cell Broadband Engine 

Power Processor (PPE) and 8 Synergistic PEs (SPEs)
peak performance 230 GF (1 TF expected by 2010)

The Problem: CMOS manufacturing technology approaches The Problem: CMOS manufacturing technology approaches 
physical limits physical limits 
0power wall, memory wall, ILP wall
0Moore’s Law still in force (number of transistors on a chip increasing)

Solution: Solution: MulticoreMulticore technologytechnology
0 improvements by multiple cores on a chip rather than higher frequency
0on-chip resource sharing provides cost and performance benefits

MulticoreMulticore systems have been produced since 2000systems have been produced since 2000
0 IBM Power 4;Sun Niagara;AMD Opteron;Intel Xeon;…
0Quadcore systems by AMD, Intel recently introduced
0 IBM/Sony/Toshiba:  Cell Broadband Engine 

Power Processor (PPE) and 8 Synergistic PEs (SPEs)
peak performance 230 GF (1 TF expected by 2010)



Future Multicore Architectures: 
From 10s to 100s of Processors on a Chip

Tile64  (Tilera Corporation, 2007)
064 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0170-300mW per core; 600 MHz – 1 GHz 
0192 GOPS (32 bit)

Kilocore 1025 (Rapport Inc. and IBM, 2008)
0Power PC and1024 8-bit processing elements
0125 MHz per processing element
032X32 “stripe” configuration
0“stripes” dedicated to different tasks 

512-core SING chip (Alchip Technologies, 2008)
0 for GRAPE-DR, a Japanese supercomputer project                            

expected to deliver 2PFLOPS in 2008 

80-core 1 TF research chip from Intel (2011)

Tile64  (Tile64  (TileraTilera Corporation, 2007)Corporation, 2007)
064 identical cores, arranged in an 8X8 grid
0 iMesh on-chip network, 27 Tb/sec bandwidth
0170-300mW per core; 600 MHz – 1 GHz 
0192 GOPS (32 bit)

KilocoreKilocore 10251025 (Rapport Inc. and IBM, 2008)(Rapport Inc. and IBM, 2008)
0Power PC and1024 8-bit processing elements
0125 MHz per processing element
032X32 “stripe” configuration
0“stripes” dedicated to different tasks 

512512--core SING chip (core SING chip (AlchipAlchip Technologies, 2008)Technologies, 2008)
0 for GRAPE-DR, a Japanese supercomputer project                            

expected to deliver 2PFLOPS in 2008

8080--core 1 TF research chip from Intel (2011)core 1 TF research chip from Intel (2011)



Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

4 processors

Node Board
(32 chips, 4x4x2)

16 Compute Cards
64 processors

System
(64 racks, 64x32x32)
131,072 processorsRack

(32 Node boards, 8x8x16)
2048 processors

2.8/5.6 GF/s
4 MB (cache)

5.6/11.2 GF/s
1 GB DDR

90/180 GF/s
16 GB DDR

2.9/5.7 TF/s
0.5 TB DDR

180/360 TF/s
32 TB DDR

HPC: Massive Parallelism Dominates 
the Path to Peta-Scale Machines

IBM BlueGene/L: 131,072 Processors 280 TF Linpack
Number 1 on  TOP 500 List since 2006

Source: IBM Corporation

Presenter
Presentation Notes
injecting/receiving packets, making routing decisions, buffers to hold packets 



High Performance Computing (HPC) and Embedded 
Computing (EC) have been traditionally at the extremes 
of the computational spectrum

However, future HPC, EC, and HPEC systems will need 
to address many similar issues (at different scales):
0multicore as the underlying technology
0massive parallelism at multiple levels
0power consumption constraints
0fault tolerance
0high-productivity reusable software

High Performance Computing (HPC) and Embedded High Performance Computing (HPC) and Embedded 
Computing (EC) have been traditionally at the extremes Computing (EC) have been traditionally at the extremes 
of the computational spectrumof the computational spectrum

However, future HPC, EC, and HPEC systems will need However, future HPC, EC, and HPEC systems will need 
to address many similar issues (at different scales):to address many similar issues (at different scales):
0multicore as the underlying technology
0massive parallelism at multiple levels
0power consumption constraints
0fault tolerance
0high-productivity reusable software

High Performance Computing and
Embedded Computing: Common Issues 



Software Issues for 
Future Parallel Systems 

Provide high-productivity programming models and tools
0support nested data and task parallelism
0allow control of locality, power management, performance
0provide intelligent tools for program development, debugging, tuning 

Address fault tolerance at multiple levels

Exploit the abundance of low-cost processors for introspection:
0fault tolerance
0performance tuning
0power management
0behavior analysis

Can programming models for HPC provide a guideline?

Provide highProvide high--productivity programming models and toolsproductivity programming models and tools
0support nested data and task parallelism
0allow control of locality, power management, performance
0provide intelligent tools for program development, debugging, tuning 

Address fault tolerance at multiple levelsAddress fault tolerance at multiple levels

Exploit the abundance of lowExploit the abundance of low--cost processors for cost processors for introspection:introspection:
0fault tolerance
0performance tuning
0power management
0behavior analysis

Can programming models for HPC provide a guideline?Can programming models for HPC provide a guideline?



1 Introduction

2 Towards High-Level Programming Models for Parallelism 

3 Outline of a Generic Introspection Framework

4 Concluding Remarks

11 IntroductionIntroduction

22 Towards HighTowards High--Level Programming Models for Parallelism Level Programming Models for Parallelism 

33 Outline of a Generic Introspection FrameworkOutline of a Generic Introspection Framework

44 Concluding RemarksConcluding Remarks

Contents



The MPI Messing-Passing Model
a portable standard allowing full control of communication 
widely adopted as the dominating HPC programming paradigm
A main reason for its success has been the capability to achieve
performance on clusters and distributed-memory architectures

Drawbacks of the MPI Model
wide gap between the scientific domain and the programming model
conceptually simple problems can result in very complex programs; 
simple changes can require significant modifications of the source
lack of separation between algorithm and communication management

High Performance Fortran (HPF) language family, ZPL,…
OpenMP
PGAS Languages (CoArray Fortran, UPC, Titanium)

The MPI MessingThe MPI Messing--Passing ModelPassing Model
a portable standard allowing full control of communication a portable standard allowing full control of communication 

widely adopted as the dominating HPC programming paradigmwidely adopted as the dominating HPC programming paradigm

A main reason for its success has been the capability to achieveA main reason for its success has been the capability to achieve
performance on clusters and distributedperformance on clusters and distributed--memory architecturesmemory architectures

Drawbacks of the MPI ModelDrawbacks of the MPI Model
wide gap between the scientific domain and the programming modelwide gap between the scientific domain and the programming model

conceptually simple problems can result in very complex programsconceptually simple problems can result in very complex programs; ; 
simple changes can require significant modifications of the soursimple changes can require significant modifications of the sourcece

lack of separation between algorithm and communication managemenlack of separation between algorithm and communication managementt

High Performance Fortran (HPF) language family, ZPL,High Performance Fortran (HPF) language family, ZPL,……

OpenMPOpenMP

PGAS Languages (PGAS Languages (CoArrayCoArray Fortran, UPC, Titanium)Fortran, UPC, Titanium)

HPC Programming Paradigm: 
State-of-the-Art

HigherHigher--level Alternatives have been proposed since the 1990slevel Alternatives have been proposed since the 1990s



do while (.not. converged)
do  J=1,M

do  I=1,N
B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
end do 

end do
A(1:N,1:N) = B(1:N,1:N) 

local computation
initialize MPI 

if (MOD(myrank,2) .eq. 1) then                                                            
call MPI_SEND(B(1,1),N,…,myrank-1,..)                                                           
call MPI_RCV(A(1,0),N,…,myrank-1,..)                                                           
if (myrank .lt. s-1) then                                                            

call MPI_SEND(B(1,M),N,…,myrank+1,..)                                                   
call MPI_RCV(A(1,M+1),N,…,myrank+1,..)                                                   

endif
else  …

…

The Key Idea of The Key Idea of 
High Performance Fortran (HPF)High Performance Fortran (HPF)

processors  P(NUMBER_OF_PROCESSORS)
distribute(*,BLOCK) onto P :: A, B

do while (.not. converged)
do  J=1,N

do  I=1,N
B(I,J) = 0.25 * (A(I-1,J)+A(I+1,J)+

A(I,J-1)+A(I,J+1))
end do 

end do
A(1:N,1:N) = B(1:N,1:N) 

global computation

data distribution

HPF ApproachMessage Passing Approach

communication 
compiler-generated

local view of data, local control, 
explicit two-sided communication

global view of data, global control, 
compiler-generated communication

… …

K. Kennedy, C. K. Kennedy, C. KoelbelKoelbel, and H. Zima: , and H. Zima: The Rise and Fall of  High Performance Fortran: An Historical ObThe Rise and Fall of  High Performance Fortran: An Historical Object Lessonject Lesson

Proc. History of Programming Languages III (HOPL III), San DiegoProc. History of Programming Languages III (HOPL III), San Diego, June 2007, June 2007



High Productivity 
Computing Systems

Goals:Goals:
Provide a new generation of economically viable high productivity computing systems for the 
national security and industrial user community (2007 – 2010)

Impact:
Performance (efficiency): critical national security 
applications by a factor of 10X to 40X
Productivity (time-to-solution) 
Portability (transparency): insulate research and 
operational application software from system
Robustness (reliability): apply all known techniques 
to protect against outside attacks, hardware faults, 
& programming errors

Applications:
Intelligence/surveillance, reconnaissance, cryptanalysis, airborne contaminant modeling and 
biotechnology

HPCS Program Focus Areas

High Productivity Languages: Chapel (Cray), X10 (IBM), and Fortress (Sun)

Source: Bob Graybill (DARPA) et al.

Presenter
Presentation Notes
Mission:

Provide a focused research and development program, creating new generations of high end programming environments, software tools, architectures, and hardware components in order to realize a new vision of high end computing, high productivity computing systems (HPCS). Address the issues of low efficiency, scalability, software tools and environments, and growing physical constraints.
Fill the high end computing between today’s late 80’s based technology High Performance Computing (HPCs) and the promise of quantum computing.
 Provide economically viable high productivity computing systems for the national security and industrial user communities with the following design attributes in the latter part of this decade:
Performance: Improve the computational efficiency and performance of critical national security applications.
Productivity: Reduce the cost of developing, operating, and maintaining HPCS application solutions.
Portability: Insulate research and operational HPCS application software from system specifics.
Robustness:  Deliver improved reliability to HPCS users and reduce risk of malicious activities.


Background:

High performance computing is at a critical juncture.  Over the past three decades, this important technology area has provided crucial superior computational capability for many important national security applications.  Government research, including substantial DoD investments, has enabled major advances in computing, contributing to the U.S. dominance of the world computer market. Unfortunately, current trends in commercial high performance computing, future complementary metal oxide semiconductor (CMOS) technology challenges, and emerging threats are creating technology gaps that threaten continued U.S. superiority in important national security applications.

As reported in recent DoD studies, there is a national security requirement for high productivity computing systems. Without government R&D and participation, high-end computing will be available only through commodity manufacturers primarily focused on mass-market consumer and business needs.  This solution would be ineffective for important national security applications.

The HPCS program will significantly contribute to DoD and industry information superiority in the following critical applications areas: operational weather and ocean forecasting; planning exercises related to analysis of the dispersion of airborne contaminants; cryptanalysis; weapons (warheads and penetrators); survivability/stealth design; intelligence/surveillance/reconnaissance systems; virtual manufacturing/failure analysis of large aircraft, ships, and



Chapel – The Cascade HPCS Language 
Key Features

Combination of ideas from HPF with modern language 
design concepts (OO, programming-in-the-large) and 
improved compilation technology 

Global view of data and computation

Explicit specification of parallelism 
0problem-oriented: forall, iterators, reductions
0support for data and task parallelism

Explicit high-level specification of locality
0data distribution and alignment
0data/thread affinity control 
0user-defined data distributions
0NO explicit control of communication

Combination of ideas from HPF with modern language Combination of ideas from HPF with modern language 
design concepts (OO, programmingdesign concepts (OO, programming--inin--thethe--large) and large) and 
improved compilation technology improved compilation technology 

Global view of data and computationGlobal view of data and computation

Explicit specification of parallelism Explicit specification of parallelism 
0problem-oriented: forall, iterators, reductions
0support for data and task parallelism

Explicit highExplicit high--level specification of localitylevel specification of locality
0data distribution and alignment
0data/thread affinity control 
0user-defined data distributions
0NO explicit control of communication

Chapel Webpage  Chapel Webpage  http://http://cs.chapel.washington.educs.chapel.washington.edu

Presenter
Presentation Notes
Bullet 2’s sub-bullets: drawing analogy: first sketching out an algorithm – works on parallel machine, but probably not optimally;
                                                         then refine over time the parts that are important; leave the rest in sketch form if adequate
                                                         90/10 rule applies here
The “major themes” will be better defined on the following slides



Example: Jacobi Relaxation in Chapel

const n= …, epsilon= …;
const DD: domain(2)     = [0..n+1, 0..n+1];

D:  subdomain(DD) = [1..n, 1..n];
var delta: real;
var A, Temp: [DD] real;  /*array declarations over domain DD */

A(0,1..n) = 1.0;

do {
forall (i,j) in D {  /* parallel iteration over domain D */

Temp(i,j) = (A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))/4.0;
delta = max reduce abs(A(D) – Temp(D));
A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);



Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q] locale = reshape(Locales);

const n= …, epsilon= …;
const DD:domain(2)distributed(block,block)on L=[0..n+1,0..n+1];

D:  subdomain(DD) = [1..n, 1..n];
var delta: real;
var A, Temp: [DD] real; /*array declarations over domain DD */

A(0,1..n) = 1.0;

do {
forall (i,j) in D {  /* parallel iteration over domain D */

Temp(i,j) = (A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))/4.0;
delta = max reduce abs(A(D) – Temp(D));
A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);



Example: Jacobi Relaxation in Chapel

const L:[1..p,1..q] locale = reshape(Locales);

const n= …, epsilon= …;
const DD:domain(2)distributed(block,block)on L=[0..n+1,0..n+1];

D:  subdomain(DD) = [1..n, 1..n];
var delta: real;
var A, Temp: [DD] real;

A(0,1..n) = 1.0;

do {
forall (i,j) in D {

Temp(i,j) = (A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))/4.0;
delta = max reduce abs(A(D) – Temp(D));
A(D) = Temp(D);

} while (delta > epsilon);

writeln(A);

Locale Grid L

Key Features
•global view of data/control
•explicit parallelism (forall)
•high-level locality control
•NO explicit communication
•NO local/remote distinction

in source code



Chapel’s Framework for                         
User-Defined Distributions

Complete flexibility for 
0distributing index sets across locales
0arranging data within a locale 

Capability analogous to function specification
0unstructured meshes
0multi-block problems
0multi-grid problems
0distributed sparse matrices

Complete flexibility for Complete flexibility for 
0distributing index sets across locales
0arranging data within a locale 

Capability analogous to function specificationCapability analogous to function specification
0unstructured meshes
0multi-block problems
0multi-grid problems
0distributed sparse matrices

Presenter
Presentation Notes
Bullet 2’s sub-bullets: drawing analogy: first sketching out an algorithm – works on parallel machine, but probably not optimally;
                                                         then refine over time the parts that are important; leave the rest in sketch form if adequate
                                                         90/10 rule applies here
The “major themes” will be better defined on the following slides



Example 
Matrix-Vector Multiplication in Chapel 

var A: [1..m,1..n] real;
var x: [1..n] real;
var y: [1..m]      real;

y = sum reduce(dim=2) forall(i,j) in [1..m,1..n] A(i,j)*x(j);



param n_spe = 8;    /* number of synergistic processors (SPEs) */
const SPE:[1..n_spe] locale;       /* declaration of SPE array */ 

var A: [1..m,1..n] real distributed(block,*) on SPE;
var x: [1..n] real replicated           on SPE;
var y: [1..m]      real distributed(block)   on SPE;

y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] A(i,j)*x(j);

(original)(original)
ChapelChapel
versionversion

Example 
Matrix-Vector Multiply on the CELL: V1

var A: [1..m,1..n] real;
var x: [1..n] real;
var y: [1..m]      real;

y = sum reduce(dim=2) forall (i,j) in [1..m,1..n] A(i,j)*x(j);

Chapel withChapel with
(implicit)(implicit)

heterogeneous  heterogeneous  
semanticssemantics

A

A1
A2

A8

A3
A4
A5
A6
A7

y1
y2
y3
y4
y5
y6
y7
y8

y

x1
x2

xm

x

PPE  Memory SPEk local memory (k=4)

A1
A2

A8

A3
Ak
A5
A6
A7

y1
y2
y3
yk
y5
y6
y7
y8

x1
x2

xm

x

SPE1

SPE2

SPE3

SPE5

SPE6

SPE7

SPE8

SPE4

Ak : k-th block of rows
yk : k-th block of elements
xk : k-th element

yA



param n_spe = 8;                  /* number of synergistic processors (SPEs) */
const SPE:[1..n_spe] locale;              /* declaration of SPE locale array */ 
const PPE: locale                               /* declaration of PPE locale */

var A: [1..m,1..n] real on PPE linked(AA) distributed(block,*) on SPE;
var x: [1..n] real on PPE linked(xx) replicated           on SPE;
var y: [1..m]      real on PPE linked(yy) distributed(block)   on SPE;

AA=A; xx=x; /* copy and distribute A, x to SPEs */
y=sum reduce(dim=2) forall (i,j) in [1..m,1..n] on locale(xx(j)) A(i,j)*x(j);
y=yy;                                                 /* copy yy back to PPE */

Example 
Matrix-Vector Multiply on the CELL: V2

Chapel/HETMC withChapel/HETMC with
explicit transfers   explicit transfers   

SPE1

SPE2

SPE3

SPE5

SPE6

SPE7

SPE8

SPE4

A

A1
A2

A8

A3
A4
A5
A6
A7

y1
y2
y3
y4
y5
y6
y7
y8

y

x1
x2

xm

x

PPE  Memory
SPEk local memory (k=4)

AA1
AA2

AA8

AA3
AAk
AA5
AA6
AA7

yy1
yy2
yy3
yyk
yy5
yy6
yy7
yy8

xx1
xx2

xxm

xxyyAA

Presenter
Presentation Notes
This is a simplified view: 
Due to the small size of the SPE memory (256KB), movement of code (downloading of functions for the SPEs) may also have to be controlled explicitly – this would have to be done via explicit intrinsics.
The connection between AA and A (and similarly, xx and x, yy and y) has been established in the source (to support compilation).



Chapel Summary

Explicit support for nested data and task parallelism
Locality awareness via user-defined data distributions
Separation of computation from data organization
Special support for high-level management of 
communication (halos, locality assertions, etc.)
Natural framework for dealing with heterogeneous 
multicore architectures and real-time computation
Also: The high-level approach represented by Chapel 
makes a significant contribution to system reliability

Explicit support for nested data and task parallelismExplicit support for nested data and task parallelism
Locality awareness via userLocality awareness via user--defined data distributionsdefined data distributions
Separation of computation from data organizationSeparation of computation from data organization
Special support for highSpecial support for high--level management of level management of 
communication (halos, locality assertions, etc.)communication (halos, locality assertions, etc.)
Natural framework for dealing with heterogeneous Natural framework for dealing with heterogeneous 
multicoremulticore architectures and realarchitectures and real--time computationtime computation
Also: The highAlso: The high--level approach represented by Chapel level approach represented by Chapel 
makes a significant contribution to makes a significant contribution to system reliabilitysystem reliability



1 Introduction

2 Towards High-Level Programming Models for Parallelism 

3 Outline of a Generic Introspection Framework

4 Concluding Remarks

11 IntroductionIntroduction

22 Towards HighTowards High--Level Programming Models for Parallelism Level Programming Models for Parallelism 

33 Outline of a Generic Introspection FrameworkOutline of a Generic Introspection Framework

44 Concluding RemarksConcluding Remarks

Contents



Requirements for Future 
Deep Space Missions

High-capability on-board computing
0autonomy 
0science processing

Radiation-hardened processor                                  
capability is insufficient
0lags commercial products by 100X-1000X                                

and two generations 

COTS-based multicore systems will be                              
able to provide the required capability

Fault Tolerance is a major issue
0focus on dealing with Single Event Upsets (SEUs)
0Total Ionization Dose (TID) is less of a problem

HighHigh--capability oncapability on--board computingboard computing
0autonomy 
0science processing

RadiationRadiation--hardened processor                                  hardened processor                                  
capability is insufficientcapability is insufficient
0lags commercial products by 100X-1000X                                

and two generations

COTSCOTS--based based multicoremulticore systems will be                              systems will be                              
able to provide the required capabilityable to provide the required capability

Fault Tolerance is a major issueFault Tolerance is a major issue
0focus on dealing with Single Event Upsets (SEUs)
0Total Ionization Dose (TID) is less of a problem

Mars        

Europa Explorer 

NeptuneTriton 
Explorer

Sample      
Return        

VenusMobile 
Explorer



High-Capability On-Board System: 
Global View

EARTH

Spacecraft
Control  

Computer

(SCC)   

Communication
Subsystem    

(COMM)       

Fault-Tolerant Computational Subsystem

System   
Controller 

(SYSC)   

P 
M

P 
M

P 
MP 

M
P 
M

P 
M

P 
MP 

M
P 
M

P 
M

P 
M

High-Performance System

Intelligent 
Mass Data 

Storage   
(IMDS)    

Instruments

Instrument Interface

Interface
fabric

Intelligent
Processor

In
Memory

Data
Server

Multicore
Compute
Engine
Cluster



Deep hierarchy of hardware and software layers
Fault tolerance must be addressed at each layer
Approaches include
0hardware fault tolerance 

for example, spacecraft control computer
0combination of hardware and software fault tolerance, e.g.:

system controller in the Space Technology 8 (ST-8) mission
isolation of cores in a multicore chip

0software-implemented adaptive fault tolerance
adjusting degree of fault tolerance to application requirements
exploiting knowledge about the domain or the algorithm
introspection can effectively support software fault tolerance

Deep hierarchy of hardware and software layersDeep hierarchy of hardware and software layers
Fault tolerance must be addressed at each layerFault tolerance must be addressed at each layer
Approaches includeApproaches include
0hardware fault tolerance 

for example, spacecraft control computer
0combination of hardware and software fault tolerance, e.g.:

system controller in the Space Technology 8 (ST-8) mission
isolation of cores in a multicore chip

0software-implemented adaptive fault tolerance
adjusting degree of fault tolerance to application requirements
exploiting knowledge about the domain or the algorithm
introspection can effectively support software fault tolerance

Fault-Tolerance in a High-Capability 
On-Board System



Introspection…
Exploits the abundance of processors in future systems

Enables a system to become self-aware and context-aware: 
0monitoring execution behavior
0reasoning about its internal state
0changing the system or system state when necessary

Can be implemented via a hierarchical system of agents

Can be applied to many different scenarios, including:
0fault tolerance
0performance tuning
0energy management
0behavior analysis

IntrospectionIntrospection……
Exploits the abundance of processors in future systemsExploits the abundance of processors in future systems

Enables a system to become selfEnables a system to become self--aware and contextaware and context--aware: aware: 
0monitoring execution behavior
0reasoning about its internal state
0changing the system or system state when necessary

Can be implemented via a hierarchical system of agentsCan be implemented via a hierarchical system of agents

Can be applied to many different scenarios, including:Can be applied to many different scenarios, including:
0fault tolerance
0performance tuning
0energy management
0behavior analysis

A Generic Framework for Introspection

A prototype system will be implemented at the Jet Propulsion Laboratory



Introspection: A Simplified Global View

ApplicationIntrospection

…
sensors

…
actuators

monitoring

analysis 

prognostics

information

execution 

mechanisms 
for implementing

feedback 

System

tuning
recovery

advice

about
application



Introspection Framework Overview

System   
Knowledge

hardware              
operating system
languages            
compilers             
libraries                

…

Application 
Domain   

Knowledge

Application  
Knowledge

components    
semantics        
performance    
experiments    

…

Presentation  
Knowledge

…

INTROSPECTION FRAMEWORK

KNOWLEDGE  BASE

Inference Engine

Agent System for

…

…

SENSORS

ACTUATORS

A

P
L
I

A
C

I
T

O
N

P

• monitoring
• analysis

• feedback  
• prediction



Case Study: Introspection Sensors 
for Performance Tuning

Introspection sensors yield information about the execution 
of the application:
0hardware monitors: accumulators, timers, programmable events
0low-level software monitors (e.g., at the message-passing level)
0high-level software monitors (e.g., at a high-productivity language 

level) 

Introspection actuators provide mechanisms, data, and 
control paths for implementing feedback to the application: 
0instrumentation and measurement retargeting
0resource reallocation
0computational steering
0program restructuring and recompilation (offline)

Introspection Introspection sensors sensors yield information about the execution yield information about the execution 
of the application:of the application:
0hardware monitors: accumulators, timers, programmable events
0low-level software monitors (e.g., at the message-passing level)
0high-level software monitors (e.g., at a high-productivity language 

level)

Introspection Introspection actuatorsactuators provide mechanisms, data, and provide mechanisms, data, and 
control paths for implementing feedback to the application: control paths for implementing feedback to the application: 
0instrumentation and measurement retargeting
0resource reallocation
0computational steering
0program restructuring and recompilation (offline)



Program/
Performance

Knowledge Base
execution of instrumented 

application program

compiler

instrumenter

data collection

analysis
agent

invariant 
checking 

agent

simplification
agent

Performance Exception Handler

data reduction and filtering

Agent System 
for Online Performance Analysis

Multicore
Compute
Engine
Cluster

feedback



Future HPC and EC systems will be based on multicore
technology providing low-cost high-capability processing 

Key software challenges
0programming and execution models combining high productivity 

with sufficient control for satisfying system requirements 
0intelligent tools supporting program development, debugging, and 

tuning 
0generic frameworks for introspection supporting fault tolerance, 

performance tuning, power management, and behavior analysis 

All these developments are currently in flow
0architectures are a moving target
0promising initial steps have been taken in many areas
0successful high-productivity software solutions will take years to 

reach industrial strength 

Future HPC and EC systems will be based on Future HPC and EC systems will be based on multicoremulticore
technology providing lowtechnology providing low--cost highcost high--capability processing capability processing 

Key software challengesKey software challenges
0programming and execution models combining high productivity 

with sufficient control for satisfying system requirements
0intelligent tools supporting program development, debugging, and 

tuning
0generic frameworks for introspection supporting fault tolerance, 

performance tuning, power management, and behavior analysis 

All these developments are currently in flowAll these developments are currently in flow
0architectures are a moving target
0promising initial steps have been taken in many areas
0successful high-productivity software solutions will take years to 

reach industrial strength 

Concluding Remarks


	�� �    Advanced Programming and Execution Models�for� Future Multi-Core Systems  ��� Hans P. Zima��Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA�and�Institute of Computational Science, University of Vienna, Austria���High Performance Embedded Computing (HPEC)�Workshop��MIT Lincoln Laboratory, 18-20 September 2007�����
	                  Contents
	        Multicore: An Emerging Technology
	            Future Multicore Architectures:�From 10s to 100s of Processors on a Chip
	    HPC: Massive Parallelism Dominates�         the Path to Peta-Scale Machines
	Slide Number 6
	             Software Issues for�          Future Parallel Systems �
	                  Contents
	                     HPC Programming Paradigm:�                               State-of-the-Art
	Slide Number 10
	High Productivity�Computing Systems
	Chapel – The Cascade HPCS Language �                      Key Features
	              Example: Jacobi Relaxation in Chapel
	              Example: Jacobi Relaxation in Chapel
	              Example: Jacobi Relaxation in Chapel
	  Chapel’s Framework for                                                    User-Defined Distributions
	                    Example�Matrix-Vector Multiplication in Chapel 
	                                Example�       Matrix-Vector Multiply on the CELL: V1
	                                Example�       Matrix-Vector Multiply on the CELL: V2
	                          Chapel Summary
	                  Contents
	Requirements for Future �   Deep Space Missions
	    High-Capability On-Board System: �                        Global View
	      Fault-Tolerance in a High-Capability �                    On-Board System
	     A Generic Framework for Introspection
	     Introspection: A Simplified Global View�    
	                     Introspection Framework Overview�
	   Case Study: Introspection Sensors�              for Performance Tuning
	             Agent System �for Online Performance Analysis
	Concluding Remarks

