

Advanced Programming and Execution Models for Future Multi-Core Systems

Dr. Hans P. Zima
Jet Propulsion Laboratory

California Institute of Technology
Pasadena,CA

and
Institute of Scientific Computing, University of Vienna, Austria

CMOS manufacturing technology has reached a state where physical limits of semiconductor-
based microelectronics lead to serious heat dissipation and data synchronization problems. As a
result, microprocessor clock speeds and straight-line instruction throughput have not
significantly risen over the past few years. This has led to a revolutionary change in chip design
characterized by multi-core architectures. In the not-too-distant future, a single chip may contain
hundreds or thousands of processors arranged in homogeneous or heterogeneous collections. At
present no generally accepted strategies for the programming and execution models of such
systems, and the associated programming environments have emerged.

This presentation will discuss some key issues in this context based on the objective of finding a
viable compromise between the goals of providing an API at a high level of abstraction and
meeting the challenges related to target code performance, power consumption, and fault
tolerance. We will particularly address the question to which degree recent experiences in
language design for peta-scale computing systems, such as those developed in the High-
Productivity-Computing- Systems (HPCS) program, can contribute to the problem of
programming multi-core systems in a productive, efficient, and reliable way.

The final part of the talk will deal with a new approach for exploiting the massive parallelism
provided by the abundance of threads in future multi-core systems. Besides their conventional
use for fine-grain parallelism in application programs, threads can be used to support
introspection realized by a hierarchical arrangement of asynchronous mobile agents with internal
state. Introspection enables a software system to become self-aware by monitoring its execution
behaviour, reasoning about its internal state, and making decisions about appropriate changes of
the system or system state when necessary. In addition to supporting graceful degradation in the
case of faults, introspection can be also applied to areas such as intrusion detection, behaviour
analysis, and performance tuning.

