

World's First Polymorphic Computer – MONARCH

MONARCH Silicon is here TODAY!

First Pass Functional Silicon

What is MONARCH?

MOrphable Networked micro-ARCHitecture

- Single, programmable chip type which can replace custom ASICs
 - Saves \$20-30M development cost and 18-36 months of development schedule per ASIC
- Processing throughput of 10 Pentiums
- Power and performance similar to custom ASICs >3 GFLOPS/W
- Programmable and Scaleable
- Balanced I/O & Processing uniquely suited to Signal Processing needs

System-on-a-Chip: Standalone solution for embedded applications Enabler for ultra small UAVs, hand-helds, munitions, etc.

GPS SDR

- 1 Custom ASIC
- 2 Vertex II Pro FPGAs
- TMS-320 μP
- Flash Memory
 RAM

...Replaced by a single MONARCH chip!

Provides completely programmable solution → Potential for future algorithm upgrades

Tiled Array: TFLOP performance in a self-contained network Enabler for embedded advanced, adaptive signal processing

MONARCH board provides >5x improvement in processing throughput, weight, and power for Global Hawk

Monarch Chip Overview

- 6 RISC Processors
- 12 MBytes on-chip DRAM
- 2 DDR-2 External Memory Interfaces (8 GB/s BW)
- Flash Port
- 2 Serial RapidIO Interface
- 16 IFL ports (2.6 GB/s ea)
- On-chip Ring 40 GB/s
- Reconfigurable Array FPCA (64 GFLOPS)

MONARCH Architecture Features

- Dual native mode, high throughput computing
 - Multiple wide word threaded (instruction flow) processors/chip
 - Highly parallel reconfigurable (data flow) processor
- Flexible on-chip memories
 - Multiport memory clusters
 - High bandwidth access to EDRAM
 - Extensible with off chip memory
- High speed, distributed cross bar I/O
 - Integrated with chip processing
 - Scalable I/O bandwidth multiple topologies
 - Direct connect to high speed I/O devices, e.g., A/D's
- Rich on chip interconnect
 - Supports on chip topology morphing and fault tolerance
 - Supports multiple computation models (SISD, SIMD, DF, SPMD,...)
 - **On chip Morph Program bus and microcontrollers**

Fixed point arithmetic

- 8, 16, 32, and 40 bit arithmetic
- Signed, unsigned, saturating modes
- Floating point arithmetic
 - 32 bit IEEE formats
- SIMD and data flow control
 - 256 bit SIMD data path (8 to 32 parallel ops)
 - >256 data flow elements per chip
- In streaming mode, data tokens accompany each data element
 - 2 bit field
 - Used for end of stream and other function control

FPCA – Basic Paradigm

- FPCA contains multiple compute and memory resources within an interconnect fabric
- Static mapping of "operation" to H/W element (ALU/Multiplier/Memory)
- Distributed control (no central "controller")
- Dynamic/data dependent operations supported

MONARCH – Physical Design

- Standard cell ASIC
- 90 nm bulk CMOS
- +18.76mm x 18.76mm
- 280 million cells
- 10.5 million nets
- Over 1.5 km wire!!
- 1059 signal I/O
- +333 MHz
- ♦ 31- 42W
- Tape out Oct 10, 2006
- First silicon Dec 22

MONARCH Chip Test Environment

FIR Filter Details

FIR filter implemented using direct-form 2

- Directly maps to FPCA
- 96 Tap FIR Filter uses all 96 floating point adders and all 96 floating point multipliers
- Sustains full 333 MSamples/s giving 64 GFLOPS!
- Can also insert FIFOs to use all 124 memory elements (248 address generators)

GFLOPS per Watt (FIR) Versus Process and Voltage

• 64 GFLOPS FIR Filter (no I/O, no FIFOs)

	Low VDD (0.95v)	Nominal VDD (1.25V)
Faster Part	5.8 GFLOPS/W	3.1 GFLOPS/W
(158ns PSRO)	(10.9W)	(20.9W)
Nominal Part	6.6 GFLOPS/W	4.1 GFLOPS/W
(195ns PSRO)	(9.6W)	(15.6W)

- Input/Output: A = samples 0 to n/2-1, B = samples n/2 to n-1.
- For larger FFTs (512 to 2K), early stages and bit reverse need more MCs
- 16 point uses 4 ACs 3 instances can be mapped per FPCA
- 2K point uses 11 ACs (maximum size due to extra MCs required)

ase, Distribution Unlimited) DISTAR Case #10144

GFLOPS per Watt (FFT) Versus Process and Voltage

2K Point FFT (31.2GFLOPS) (no I/O)

For comparison IBM Cell is 0.5 GFLOP/W

	Low VDD (0.95v)	Nominal VDD (1.25V)
Faster Part	1.8 GFLOPS/W	1.3 GFLOPS/W
(158ns PSRO)	(17.6W)	(23.3W)
Nominal Part	2.9 GFLOPS/S	2.6 GFLOPS/W
(195ns PSRO)	(10.7W)	(12.1W)

MONARCH Power Measurements (Reduced Core Voltage, Nominal Part)

MONARCH SW Tools

RISC C/C++ compiler

- Validated C++ compiler from Code Sourcery
- Automatic vectorization for wide word (limited testing)
- Supports gcc vector data types for the Wide Word processors
- RISC assembler
- RISC Operating System
 - RTEMS
 - Real-time, Embedded
 - Not validated on chip

- RISC Libraries
 - VSIPL Core Plus and SAL (for a single processor)
- FPCA Libraries
 - Signal processing routines (FFT, FIR)
- FPCA tools
 - Assembler, Router
- Simulator
 - Simulate FPCA and RISC
 - Gdb debugging for RISC programs

APARES Distribution State Real "A" (A DISYMETICI PUP TO REASA Distribution Antimited) DISTAR Case #10144

Looking to the Future

Improved software tools are essential

- Performance per Watt
- Lower total power
- Security/AT/Crypto
- Improved SWEPT for mission level enablers

<u>90 nm respin</u>	45 nm respin with minimal mods	45 nm respin with larger mods
♦ Minor Errata Fix	 Leave chip design largely as is 	 Use 3D physical design and wafer
Performance Same	 New physical design 	scale
	 Update IOs as needed 	 Plus those to left
	 Update architecture paths 	Performance per Watt >4X
	Performance per Watt 4X	 Functionality/memory growth
	 Total performance 2X 	 Total performance >2X

SWEPT

SWEPT

Size Weight Energy Performance Time

- Lloyd Lewins
 - 310 647 8832 / <u>llewins@raytheon.com</u>
- Ken Prager
 - 916 791 8525 / keprager@raytheon.com
- Gillian Groves
 - 310 647 2315 / gillian@raytheon.com
- Michael Vahey
 - 310 647 4701 / mdvahey@raytheon.com

