
StreamIt-A Programming
Language for the Era of Multicores

Saman Amarasinghe
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Today: The Happily Oblivious
Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance
– Sufficient for Joe’s requirements

• Joe has built a solid boundary between
Hardware and Software
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent

• This abstraction has provided a lot of freedom for Joe

• Parallel Programming is only practiced by a few experts

2

3

How to program
multicores?

1985 199019801970 1975 1995 2000 2005

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Ambric
AM2045

Where Joe is heading

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2Athlon

A Program written in the 70’s not only works today…
but also runs faster (tracking Moore’s law)

Presenter
Presentation Notes
Now that multicore designs are becoming dominant, we want to ask ourselves what is the common machine language for them.
We would like to write a program once and have it be portable and scale with future generations of multicore designs.
Also, we want parallel programming has to become as easy as sequential programming thus, the common machine language should be
composeable, malleable, and maintainable and the mapping burden should be squarely on the compiler.

Joe the Parallel Programmer

• Moore’s law is not bringing
anymore performance gains

• If Joe needs performance he
has to deal with multicores
– Joe has to deal with performance
– Joe has to deal with parallelism

4

5

Why Parallelism is Hard

• A huge increase in complexity and work for the programmer
– Programmer has to think about performance!
– Parallelism has to be designed in at every level

• Humans are sequential beings
– Deconstructing problems into parallel tasks is hard for many of us

• Parallelism is not easy to implement
– Parallelism cannot be abstracted or layered away
– Code and data has to be restructured in very different (non-intuitive) ways

• Parallel programs are very hard to debug
– Combinatorial explosion of possible execution orderings
– Race condition and deadlock bugs are non-deterministic and illusive
– Non-deterministic bugs go away in lab environment and with

instrumentation

6

Outline: Who can help Joe?

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

7

Computer Architecture

• Current generation of multicores
– How can we cobble together something with existing

parts/investments?
– Impact of multicores haven’t hit us yet

• The move to multicore will be a disruptive shift
– An inversion of the cost model
– A forced shift in the programming model

• A chance to redesign the microprocessor from scratch.

• What are the innovations that will reduce/eliminate the
extra burden placed on poor Joe?

8

Novel Opportunities in Multicores

• Don’t have to contend with uniprocessors
• Not your same old multiprocessor problem

– How does going from Multiprocessors to Multicores impact
programs?

– What changed?
– Where is the Impact?

– Communication Bandwidth
– Communication Latency

9

Communication Bandwidth

• How much data can be communicated
between two cores?

• What changed?
– Number of Wires
– Clock rate
– Multiplexing

• Impact on programming model?
– Massive data exchange is possible
– Data movement is not the bottleneck

processor affinity not that important

32 Giga bits/sec ~300 Tera bits/sec

10,000X

10

Communication Latency

• How long does it take for a round trip
communication?

• What changed?
– Length of wire
– Pipeline stages

• Impact on programming model?
– Ultra-fast synchronization
– Can run real-time apps

on multiple cores

50X

~200 Cycles ~4 cycles

Architectural Innovations

The Raw Experience

The MIT Raw Processor
• Raw project started in 1997

Prototype operational in 2003
• The Problem: How to keep the

Moore’s Law going with
– Increasing processor complexity
– Longer wire delays
– Higher power consumption

• Raw philosophy
– Build a tightly integrated multicore
– Off-load most functions to

compilers and software
• Raw design

– 16 single issue cores
– 4 register-mapped networks
– Huge IO bandwidth

• Raw power
– 16 Flops/ops per cycle
– 16 Memory Accesses per cycle
– 208 Operand Routes per cycle
– 12 IO Operations per cycle

Raw’s networks are tightly
coupled into the bypass paths

IF RFD

A TL

M1 M2

F P

E

U

TV

F4 WB

r26

r27

r25

r24

Network
Input
FIFOs

r26

r27

r25

r24

Network
Output
FIFOs

Ex: lb r25, 0x341(r26)

fmul r24, r3, r4

software
controlled
crossbar

software
controlled
crossbar

fadd r5, r3, r24

route P->E route W->P

Presenter
Presentation Notes
Instead, we actually integrate the networks into the bypass paths of the processor.
In the picture above, there are two groups of fifos, one input and one output. These fifos
are flow controlled, so a read from an empty fifo will cause the processor to stall, and a write to
a fifo that’s full will also cause a stall.

These fifos are register mapped. This means that when a processor writes to register 24, for instance,
the data value ends up going into the fifo and out through the network. Similarly a read from register 24
will read a data value from the incoming fifo.

It’s interesting to see how the fifos are integrated into the pipeline. The input fifos are muxed into the bypass
muxes of the dispatch stage. The output fifos tap into each of the stages of the pipeline. This allows us to
take a value out of the pipeline as soon as it is ready. This is very important for ensuring low-latency communication.
The logic for this is just like bypass logic, except that the priorities are reversed. The networks favor the oldest values in
the pipeline, while normally bypassing favors the newest values.

Raw Networks is Rarely the Bottleneck

• Raw has 4 bidirectional,
point-to-point mesh networks
– Two of them statically routed
– Two of the dynamically routed

• A single issue core may read
from or write to one network in
a given cycle

• The cores cannot saturate the
network!

(225 Gb/s @ 225 Mhz)

MIPS-Style
Pipeline

8 32-bit
buses

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BitonicSort FFT DCT DES TDE Serpent

ave. bandwidth utilization

ave. instruction utilization

15

Outline: Who can help Joe?

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

16

Why New Programming Models
and Languages?

• Paradigm shift in architecture
– From sequential to multicore
– Need a new “common machine language”

• New application domains
– Streaming
– Scripting
– Event-driven (real-time)

• New hardware features
– Transactions
– Introspection
– Scalar Operand Networks or Core-to-core DMA

• New customers
– Mobile devices
– The average Joe programmer!

• Can we achieve parallelism without burdening the programmer?

17

Domain Specific Languages

• There is no single programming domain!
– Many programs don’t fit the OO model (ex: scripting and streaming)

• Need to identify new programming models/domains
– Develop domain specific end-to-end systems
– Develop languages, tools, applications ⇒ a body of knowledge

• Stitching multiple domains together is a hard problem
– A central concept in one domain may not exist in another

– Shared memory is critical for transactions, but not available in streaming
– Need conceptually simple and formally rigorous interfaces
– Need integrated tools
– But critical for many DOD and other applications

18

• Two choices:
• Bend over backwards to support

old languages like C/C++
• Develop parallel architectures

that are hard to program

Programming Languages
and Architectures

Modern
architecture

C von-Neumann
machine

Compiler-Aware
Language Design

The StreamIt Experience

Speaker

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3

programmability

domain specific
optimizations

enable parallel
execution

simple and effective optimizations for
domain specific abstractions

boost productivity, enable faster development
and rapid prototyping

Is there a win-win situation?

• Some programming models are inherently concurrent
– Coding them using a sequential language is…

• Harder than using the right parallel abstraction
• All information on inherent parallelism is lost

• There are win-win situations
– Increasing the programmer productivity while extracting parallel performance

target tiled architectures, clusters, DSPs,
multicores, graphics processors, …

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Channel Upsample Channel Upsample

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<QC>

<QC>

reference
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {

split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

Streaming Application Abstraction

• Structured block level diagram
describes computation and flow
of data

• Conceptually easy to understand
– Clean abstraction of functionality

• Mapping to C (sequentialization)
destroys this simple view

MPEG-2 Decoder

StreamIt Improves Productivity

output to player

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Channel Upsample Channel Upsample

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<QC>

<QC>

reference
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {
split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

Picture Reorder

joiner

joiner

IDCT

IQuantization

splitter

splitter

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Channel Upsample Channel Upsample

Motion Vector Decode

Y Cb Cr

quantization coefficients

picture type

<QC>

<QC>

reference
picture

Motion Compensation

<PT1> reference
picture

Motion Compensation

<PT1>reference
picture

Motion Compensation

<PT1>

<PT2>

Repeat

Color Space Conversion

<PT1, PT2>

add VLD(QC, PT1, PT2);

add splitjoin {

split roundrobin(N∗B, V);

add pipeline {
add ZigZag(B);
add IQuantization(B) to QC;
add IDCT(B);
add Saturation(B);

}
add pipeline {

add MotionVectorDecode();
add Repeat(V, N);

}

join roundrobin(B, V);
}

add splitjoin {
split roundrobin(4∗(B+V), B+V, B+V);

add MotionCompensation(4∗(B+V)) to PT1;
for (int i = 0; i < 2; i++) {

add pipeline {
add MotionCompensation(B+V) to PT1;
add ChannelUpsample(B);

}
}

join roundrobin(1, 1, 1);
}

add PictureReorder(3∗W∗H) to PT2;

add ColorSpaceConversion(3∗W∗H);

MPEG bit stream

StreamIt Compiler
Extracts Parallelism

• Task Parallelism
– Thread (fork/join) parallelism
– Parallelism explicit in algorithm
– Between filters without

producer/consumer relationship

• Data Parallelism
– Data parallel loop (forall)
– Between iterations of a stateless filter
– Can’t parallelize filters with state

• Pipeline Parallelism
– Usually exploited in hardware
– Between producers and consumers
– Stateful filters can be parallelized

MPEG-2 Decoder

StreamIt Compiler
Parallelism Processor Resources

• StreamIt Compilers Finds the Inherent Parallelism
– Graph structure is architecture independent
– Abundance of parallelism in the StreamIt domain

• Too much parallelism is as bad as too little parallelism
– (remember dataflow!)

• Map the parallelism in to the available resources in a given multicore
– Use all available parallelism
– Maximize load-balance
– Minimize communication

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Voc
od

er FFT

FMRad
io

TDE

Bito
nic

Sort
MPEG2D

ec
od

er
Cha

nn
elV

oc
od

er

DES

DCT

Filte
rba

nk

Serp
en

t

Rad
ar

Geo
metr

ic
Mea

n

Benchmarks

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 S
in

gl
e

C
or

e
St

re
am

It
 .

StreamIt Performance on Raw

Presenter
Presentation Notes
put in all the bars for this, grey out other bars, the outline and the fill
explain the vocoder and the radar app and why they do so well
redo colors!
explain the other minor speedups
explain mpeg2decoder
comment on state, is it going to become more important mpeg4, h264?

26

Outline: Who can help Joe?

1. Advances in Computer Architecture

2. Novel Programming Models and Languages

3. Aggressive Compilers

27

Parallel Programming Models
• Current models are too primitive

– Akin to assembly language programming

• We need new Parallel Programming Models that…

– does not require any non-intuitive reorganization of data or code

– will completely eliminate hard problems such as race conditions and
deadlocks

– akin to the elimination of memory bugs in Java

– can inform the programmer if they have done something illegal
– akin to a type system or runtime null-pointer checks

– can take advantage of available parallelism without explicit user intervention
– akin to virtual memory where the programmer is oblivious to physical size

– the programmer can be oblivious to parallelism and performance issues
– akin to ILP compilation to VLIW machine

28

Compilers

• Compilers are critical in reducing the burden on
programmers
– Identification of data parallel loops can be easily automated, but

many current systems (Brook, PeakStream) require the
programmer to do it.

• Need to revive the push for automatic parallelization
– Best case: totally automated parallelization hidden from the user
– Worst case: simplify the task of the programmer

Parallelizing Compilers

The SUIF Experience

The SUIF Parallelizing Compiler

• The SUIF Project at Stanford in the ’90
– Mainly FORTRAN
– Aggressive transformations to undo “human optimizations”
– Interprocedural analysis framework
– Scalar and array data-flow, reduction recognition and a host of

other analyses and transformations

• SUIF compiler had the Best SPEC results by automatic
parallelization

SPECFP92 performance

• Vector processor Cray C90 540
• Uniprocessor Digital 21164 508
• SUIF on 8 processors Digital 8400 1,016

sp
ic

e
2

g
6

d
o

d
u

c

f p
p

p
p

o
ra

m
d

ljd
p

2

w
a

v e
5

m
d

ljs
p

2

a
lv

in
n

n
a

s a
7

e
a

r

h
yd

r o
2

d

s u
2

co
r

to
m

c
a

t v

s w
m

2
5

6

0

200

400

600

800

1000

1200

M
F

L
O

P
S

N
u

m
b

e
r

o
f

P
r o

c
e

s
s

o
rs

1

2

3

4

5

6

7

8

Automatic Parallelization
“Almost” Worked

• Why did not this reach mainstream?
– The compilers were not robust
– Clients were impossible (performance at any cost)
– Multiprocessor communication was expensive
– Had to compete with improvements in sequential performance
– The Dogfooding problem

• Today: Programs are even harder to analyze
– Complex data structures
– Complex control flow
– Complex build process
– Aliasing problem (type unsafe languages)

34

Conclusions
• Programming language research is a critical long-term investment

– In the 1950s, the early background for the Simula language was funded by
the Norwegian Defense Research Establishment

– In 2002, the designers received the ACM Turing Award “for ideas
fundamental to the emergence of object oriented programming.”

• Compilers and Tools are also essential components

• Computer Architecture is at a cross roads
– Once in a lifetime opportunity to redesign from scratch
– How to use the Moore’s law gains to improve the programmability?

• Switching to multicores without losing the gains in programmer
productivity may be the Grandest of the Grand Challenges
– Half a century of work ⇒ still no winning solution
– Will affect everyone!

• Need a Grand Partnership between the Government, Industry and
Academia to solve this crisis!

	StreamIt-A Programming Language for the Era of Multicores
	Today: The Happily Oblivious�Average Joe Programmer
	Where Joe is heading
	Joe the Parallel Programmer
	Why Parallelism is Hard
	Outline: Who can help Joe?
	Computer Architecture
	Novel Opportunities in Multicores
	Communication Bandwidth
	Communication Latency
	Architectural Innovations
	The MIT Raw Processor
	Raw’s networks are tightly coupled into the bypass paths
	Raw Networks is Rarely the Bottleneck
	Outline: Who can help Joe?
	Why New Programming Models �and Languages?
	Domain Specific Languages
	Programming Languages �and Architectures
	Compiler-Aware �Language Design
	Is there a win-win situation?
	Streaming Application Abstraction
	StreamIt Improves Productivity
	StreamIt Compiler �Extracts Parallelism
	StreamIt Compiler �Parallelism Processor Resources
	StreamIt Performance on Raw
	Outline: Who can help Joe?
	Parallel Programming Models
	Compilers
	Parallelizing Compilers
	The SUIF Parallelizing Compiler
	SPECFP92 performance
	Automatic Parallelization �“Almost” Worked
	Conclusions

