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Outline

 Top500 Results

* Four Important Concepts that Will
Effect Math Software

» Effective Use of Many-Core

= Exploiting Mixed Precision in Our
Numerical Computations

= Self Adapting / Auto Tuning of Software
» Fault Tolerant Algorithms
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H. Meuer, H. Simon, E. Strohmaier, & J

- Listing of the 500 most powerful

Computers in the World
- Yardstick: Rmax from LINPACK MPP

AX:b, dense problem

- Updated twice a year

Rate

TPP performance

P

Size

SC*xy In the States In November
Meeting In Germany in June

- All data available from www.top500.0rg
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SUPERCOMPUTER SITES

2590 Performance Projection
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500 (Chips Used in Each of the 500 Systems

SUPERCOMPUTER SITES

96% = 58% Intel
Intel EM64T 17% IBM
46% 21% AMD
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2222 Interconnects / Systems
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Jrrwnsmg CPU Performance:

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor
Power «Frequency’

CPU Power Consumption 1993 - 2005
AMD and Intel

We have seen increasing number of gates on a
chip and increasing clock speed.

B0 q----------1

o — 28 Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

We will not see the dramatic increases in clock
speeds in the future. —

However, the number of
gates on a chip will
continue to increase.

1970 1975 1980 1985 1990 1995 2000 2005.
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Intel Prototype May Herald a New Age of
?
e Intel’s 80 Processing

- By JOHN MARKOFF
O re C I p Published: February 12, 2007 B EMalL

SAN FRANCISCO, Feb. 11 — Intel will demonstrate on &= PRINT

u \Q Tfl O p/ S Monday an experimental computer chip with 80 separate B RePRINTS
processing engines, or cores, that company executives say L4 SAVE

u 6 2 Watts provides a model for commercial chips that will be used widely SHARE

in standard desktop, laptop and server computers within five S

u 1.2 TB/ S years. e_;ﬁn;%m
Internal BW

The new processor, which the
company first described as a Teraflop Chip at a
conference last year, will be detailed in a technical

paper to be presented on the opening day of the

To Future

Stacked Memory International Solid States Circuits Conference,

beginning here on Monday.

F West
neighbor

While the chip is not compatible with Intel’s current
chips, the company said it had already begun design

work on a commercial version that would essentially
The Teraflop Chip has 80 have dozens or even hundreds of Intel-compatible

separate processing engines microprocessors laid out in a tiled pattern on a
and takes advantage of

manufacturing technology that single chip.
Intel introduced last manth
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What’s Next?

Mixed Large ii

All Large Core and ii

Small Core Many Small Cores
ii i: e
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All Small Core

et

Different Classes of Chips
Home
Games / Graphics
Business
Scientific

Many Floating- + 3D Stacked
Point Cores Memory
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Major Changes to Software

e Must rethink the design of our
software

= Another disruptive technology

e Similar to what happened with cluster
computing and message passing

» Rethink and rewrite the applications,
algorithms, and software

e Numerical libraries for example will
change

* For example, both LAPACK and
ScaLAPACK will undergo major changes
to accommodate this



£ A New Generation of Software:
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Algorithms follow hardware evolution in time

LINPACK (80°s)
(Vector operations)

LAPACK (90°’s)
(Blocking, cache
friendly)

Rely on
- Level-1 BLAS
operations

Rely on
- Level-3 BLAS
operations



£ A New Generation of Software:

o Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Algorithms follow hardware evolution in time

LINPACK (80’s) Rely on
(Vector operations) - Level-1 BLAS
operations
LAPACK (90°s) Rely on
(Blocking, cache - Level-3 BLAS
friendly) operations
PLASMA (00’s) Rely on
New Algorithms - a DAG/scheduler
(many-core friendly) - block data layout
- some extra kernels

Those new algorithms
- have a very low granularity, they scale very well (multicore, petascale computing, ... )
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.
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Steps in the LAPACK LU

DGETF2
(Factor a panel)

DLSWP
(Backward swap)

DLSWP
(Forward swap)

- DTRSM
(Triangular solve)

DGEMM |
(Matrix multiply)
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£ LU Timing Profile (4 processor system)

Threads — no lookahead

Time for each comp

onent

Bulk Sync Phases
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¢ Adaptive Lookahead - Dynamic
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Event Driven Multithreading
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O O

while (1)
fetch task();
switch (task.type) {
case PANEL:
dgetf2 () ;
update_progress () ;
case COLUMN:

dlaswp () ;

dgemm () ;
update_progress () ;

case END:

for ()

dlaswp () ;
return;

Reorganizing
algorithms to use
this approach



~. Fork-Join vs. Dynamic Execution

AR I 5 I Fork-Join — parallel BLAS
— —)
— —) >
—— —)

Time

Experiments on
Intel’s Quaq7Core Clovertown
with 2 Sockets w/ 8 Treads




~. Fork-Join vs. Dynamic Execution

A K g S i Fork-Join — parallel BLAS
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u With the Hype on Cell & PS3

We Became Interested

The PlayStation 3's CPU based on a "Cell** processor
Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing unit,
SPE: SPU + DMA engine)

= An SPE is a self contained vector processor which acts independently from the
others.

e 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ
= 204.8 Gflop/s peak!
= The catch is that this is for 32 bit floating point; (Single Precision SP)

= And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!!
e Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues

SPE SPE SPE

SPE ~ 25 Gflop/s peak

Even Pipeline

Floating Point Unit
Fixed Point Unit

L

[ fnstruction fssue Uit/ Instruction Line Buffer

[ On-Chip Coherent Bus L—{ Memory Flow Controller (MFC) =
Dual XOR™  RRAC /0 19
b
!




¢ Performance of Single Precision
on Conventional Processors

similar situation on DGEMM DGEMV

our commodity AMD Opteron
Processors. 246 3000 2.00 5000 1.70
= Thatis, SPis2Xa&s yjtrasparc-lle 3000 1.64 5000 1.66
fast as DP on many intel PIII
systems ntel Pl
Coppermine 3000 2.03 5000 2.09
« The Intel Pentium  PowerPC 970 3000 2.04 5000 1.44
and AMD Opteron Intel
have SSE2 Woodcrest 3000 1.81 5000 2.18
= 2 flops/cycle DP Intel XEON 3000 2.04 5000 1.82
e 4 flops/cycle SP Intel Centrino
Duo 3000 2.71 5000 2.21
= |IBM PowerPC has
Altivec Single precision is faster because:
= 8flops/cycle SP » Higher parallelism in SSE/vector units

e 4 flops/cycle DP

. .
« No DP on AltiVec Reduced data motion

 Higher locality in cache



IcLOr"

32 or 64 bit Floating Point Precision?

e A long time ago 32 bit floating point was
used

= Still used in scientific apps but limited

e Most apps use 64 bit floating point
= Accumulation of round off error

e A 10 TFlop/s computer running for 4 hours performs > 1
Exaflop (10'8) ops.

lll conditioned problems
IEEE SP exponent bits too few (8 bits, 10%38)

Critical sections need higher precision
e Sometimes need extended precision (128 bit fl pt)

However some can get by with 32 bit fl pt in
some parts

e Mixed precision a possibility
= Approximate in lower precision and then refine

or improve solution to high precision.
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ldea Goes Something Like This...

e Exploit 32 bit floating point as much as
possible.

= Especially for the bulk of the computation

e Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

e Intuitively:
» Compute a 32 bit result,

= Calculate a correction to 32 bit result using
selected higher precision and,

= Perform the update of the 32 bit results with the

correction using high precision.
22



Mixed-Precision lterative Refinement

e |terative refinement for dense systems, Ax = b, can work this
way.

L U = lu(A) SINGLE o(rn’)
x = L\(U\b) SINGLE o(n’)
r=bh—Ax DOUBLE o(n°)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n’)
X=X+2Z DOUBLE o(n’)
r=b—Ax DOUBLE o(r’)

END



Mixed-Precision lterative Refinement

e |terative refinement for dense systems, Ax = b, can work this
way.

L U = lu(A) SINGLE o(rn’)
x = L\(U\b) SINGLE o(n’)
r=b—Ax DOUBLE o(n°)
WHILE || r || not small enough
z = L\(U\r) SINGLE o(n’)
X=X+2Z DOUBLE o(n’)
r=b—Ax DOUBLE o(r’)
END

= Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

= |t can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n?) work is done in high precision

Problems if the matrix is ill-conditioned in sp; O(109%)




N~
< Results for Multiple Precision

Ilterative Refinement

IEﬁlli.nlglg prec,‘su ArCh iteCture (B LAS)
s Intel Pentium Il Coppermine (Goto)

Intel Pentium Il Katmai (Goto)

Sun UltraSPARC lle (Sunperf)
Intel Pentium IV Prescott (Goto)

Intel Pentium IV-M Northwood (Goto)
AMD Opteron (Goto)

Cray X1 (libsci)

IBM Power PC G5 (2.7 GHz) (VecLib)
Compag Alpha EV6 (CXML)
IBM SP Power3 (ESSL)

Speedup wrt double precision

P2 O oo ~NoO g wNE
= o

SGI Octane (ATLAYS)

1 2 3 4 5 6 7 8 9 10 11
Architecture

New routines in LAPACK that do this for LU and LLT
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~ What about the Cell?

e Power PC at 3.2 GHz o e Mo
= DGEMM at 5 Gflop/s I
= Altivec peak at 25.6 Gflop/s

e Achieved 10 Gflop/s SGEMM

e 8 SPUs

= 204.8 Gflop/s peak!
= The catch is that this is for 32 bit floating point;
(Single Precision SP)

= And 64 bit floating point runs at 14.6 Gflop/s
total for all 8 SPEs!!

e Divide SP peak by 14; factor of 2 because of DP and 7
because of latency issues

20
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< |BM Cell 3.2 GHz, Ax=Db

Cell
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gy || S —————————
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o

—e—SP Peak (204 Gfiop/s)
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=i— SP Ax=b IBM
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o
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< |BM Cell 3.2 GHz, Ax = b

250
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8 SGEMM (Embarrassingly Parallel)
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Matrix Size
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““ Cholesky on the Cell, Ax=b, A=AT, xTAx > 0

200 -

175 -

150 -

125 -

100

Gflop/s

SP peak
SGEMM peak Single precision performance

SPOTRF

DSPOSY

Mixed precision performance using iterative refinement
Method achieving 64 bit accuracy

DP peak

1000 2000 3000 4000
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Cholesky - Using 2 Cell Chips

SPOTRF - Q520 - 2 CELL BEs
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“Intriguing Potential

Exploit lower precision as much as possible
= Payoff in performance
e Faster floating point
e Less data to move
Automatically switch between SP and DP to match
the desired accuracy
= Compute solution in SP and then a correction to the
solution in DP
Potential for GPU, FPGA, special purpose processors
= What about 16 bit floating point?
e Use as little you can get away with and improve the accuracy
Applies to sparse direct and iterative linear systems
and Eigenvalue, optimization problems, where

Newton’s method is used. f(xi)
Xi+1 = Xj —

J(xi) S (xi)
_ f‘/ (xi ) Correction = - A\(b — Ax)
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Conclusions

For the last decade or more, the research
Investment strategy has been
overwhelmingly biased in favor of hardware.

This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side.

Moreover, the return on investment Is more
favorable to software.

= Hardware has a half-life measured in years, while

software has a half-life measured In decades.

High Performance Ecosystem out of balance

= Hardware, OS, Compilers, Software, Algorithms, Applications
e No Moore’s Law for software, algorithms and applications



&

< Collaborators / Support

Alfredo Buttari, UTK F ¢\ The Mathiorks
Julien Langou,
UColorado

Julie Langou, UTK GO Ugle

Piotr Luszczek,
MathWorks

Jakub Kurzak, UTK
Stan Tomov, UTK

Advanced Search
Frefereances

rra :
| Google Search || I'm Feeling Lucky N Language Tools

Advertising Programs - Business Solutions - About Google

2007 Google

25



