
The Impact of The Impact of MulticoreMulticore on on The Impact of The Impact of MulticoreMulticore on on
Mathematical SoftwareMathematical Software

kJack Dongarra
INNOVATIVE COMP ING LABORATORY

U i i f TUniversity of Tennessee
Oak Ridge National Laboratory

11/19/2007 1

OutlineOutline

• Top500 Resultsp
• Four Important Concepts that Will

Effect Math SoftwareEffect Math Software
Effective Use of Many-Core
Exploiting Mixed Precision in Our Exploiting Mixed Precision in Our
Numerical Computations
Self Adapting / Auto Tuning of SoftwareSelf Adapting / Auto Tuning of Software
Fault Tolerant Algorithms

2

H. Meuer, H. Simon, E. Strohmaier, & JDH. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerfulg p
Computers in the World

- Yardstick: Rmax from LINPACK MPPYardstick: Rmax from LINPACK MPP
Ax=b, dense problem TPP performance

- Updated twice a year
SC‘ i h S i b

Size

Ra
te

SC‘xy in the States in November
Meeting in Germany in June

3- All data available from www.top500.org

Performance Development

4.92 PF/s

 1 Pflop/s
281 TF/s

NEC Earth Simulator

SUM100 Tflop/s

 10 Tflop/s

 1 Pflop/s

IBM BlueGene/L

1.17 TF/s

59.7 GF/s

4.0 TF/s

Intel ASCI Red

IBM ASCI White
N=1

 1 Tflop/s

100 Gfl /

 10 Tflop/s

6-8 years

0.4 GF/s

Fujitsu 'NWT'

N=500

100 Gflop/s

 10 Gflop/s
My Laptop

0.4 GF/s

93 94 95 96 97 98 99 00 01 02 03 04 05 06 07

 1 Gflop/s

 100 Mflop/s

4

19
9

19
9

19
9

19
9

19
9

19
9

19
9

20
0

20
0

20
0

20
0

20
0

20
0

20
0

20
0

Performance Projection

10 PF/s

1 EF/s
100

SUM100 TF/s
1 PF/s

10 PF/s

1 TF/s

100 GF/s

10 TF/s

N=11 GF/s
100 MF/s

10 GF/s

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

N=500
100 MF/s

5

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Chips Used in Each of the 500 Systems

Intel EM64T

96% = 58% Intel
17% IBM
21% AMD46%

Intel IA-32
6%

NEC
1%

Sun Sparc
1%

21% AMD

Cray
0%

HP PA RISC

1%

HP Alpha
0%

HP PA-RISC
2%

Intel IA-64
6%

AMD x86_64
21%

6
IBM Power

17%

Interconnects / Systems

500
Others

Cray

300

400

Cray
Interconnect
SP Switch

Crossbar

200

300
Quadrics

Infiniband (128)

0

100 Myrinet

Gigabit Ethernet (206)

(46)

0

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

N/A

7

GigE + Infiniband + Myrinet = 76%

IncreaseIncrease

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor
Power ∝Frequency3

Lower Lower
VoltageVoltage

Increase Increase
Clock RateClock Rate
& Transistor & Transistor

DensityDensityDensityDensity

We have seen increasing number of gates on a
chip and increasing clock speed.Cache Cache

Heat becoming an unmanageable problem, Intel
Processors > 100 Watts

Core Core Core

C1 C2 C1 C2 We will not see the dramatic increases in clock
speeds in the future.

However, the number of

C1 C2

Cache

C1 C2

Cache

C1 C2

C3 C4

C1 C2

C3 C4

8

gates on a chip will
continue to increase.C3 C4 C3 C4

C1 C2

C3 C4

C1 C2

C3 C4

80 Core80 Core
• Intel’s 80

Core chipCore chip
1 Tflop/s
62 Watts62 Watts
1.2 TB/s
internal BWinternal BW

9

What’s Next?What’s Next?
All Large CoreAll Large Core

Mixed LargeMixed Large
andand
Small CoreSmall Core Many Small CoresMany Small CoresS all Co eS all Co e Many Small CoresMany Small Cores

All Small CoreAll Small Core

Different Classes of Chips
H

+ 3D Stacked Many Floating-

Home
Games / Graphics
Business
Scientific

SRAMSRAM

MemoryPoint Cores

Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster

computing and message passing
Rethink and rewrite the applications,
algorithms and softwarealgorithms, and software

• Numerical libraries for example will
changechange

For example, both LAPACK and
ScaLAPACK will undergo major changes

11

g j g
to accommodate this

A New Generation of Software:A New Generation of Software:

Algorithms follow hardware evolution in time

LINPACK (80’s)
(Vector operations)

Rely on
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (90’s) Rely on LAPACK (90 s)
(Blocking, cache
friendly)

Rely on
- Level-3 BLAS

operations

PLASMA (00’s)
New Algorithms
(many-core friendly)

Rely on
- a DAG/scheduler
- block data layout

some extra kernels- some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, …)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)

avoid latency (distributed computing out of core)- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

A New Generation of Software:A New Generation of Software:
Parallel Linear Algebra Software for Parallel Linear Algebra Software for MulticoreMulticore Architectures (PLASMA)Architectures (PLASMA)

Algorithms follow hardware evolution in time

LINPACK (80’s)
(Vector operations)

Rely on
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (90’s) Rely on LAPACK (90 s)
(Blocking, cache
friendly)

Rely on
- Level-3 BLAS

operations

PLASMA (00’s)
New Algorithms
(many-core friendly)

Rely on
- a DAG/scheduler
- block data layout

some extra kernels- some extra kernels
Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, …)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)

avoid latency (distributed computing out of core)- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d)

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)

14
DGEMM BLAS

(Matrix multiply)

LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)
Threads – no lookahead

1D decomposition and SGI OriginTime for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases

Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

16Event Driven MultithreadingEvent Driven Multithreading
Reorganizing

algorithms to use
this approach

ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution
A

C

A

B C

T TT Fork-Join – parallel BLAS

Time

Experiments on Experiments on
17

pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads

ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution
A

C

A

B C

T TT Fork-Join – parallel BLAS

Time

DAG-based – dynamic scheduling

Experiments on Experiments on

Time
saved

18

pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads

With With the the Hype on Hype on Cell & PS3Cell & PS3
We Became Interested We Became Interested We Became Interested We Became Interested

• The PlayStation 3's CPU based on a "Cell“ processor
• Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing unit,

SPE: SPU + DMA engine)
An SPE is a self contained vector processor which acts independently from the
others.

• 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ

204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; (Single Precision SP)
And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!!

• Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues

SPE ~ 25 Gflop/s peak

19

Performance of Single Precision Performance of Single Precision
on Conventional Processorson Conventional Processorson Conventional Processorson Conventional Processors

• Realized have the
similar situation on
our commodity

SizeSize SGEMM/SGEMM/
DGEMMDGEMM SizeSize SGEMV/SGEMV/

DGEMVDGEMV
AMD Opteronour commodity

processors.
• That is, SP is 2X as

fast as DP on many
systems

AMD Opteron
246 30003000 2.002.00 50005000 1.701.70

UltraSparc-IIe 30003000 1.641.64 50005000 1.661.66
Intel PIII systems

• The Intel Pentium
and AMD Opteron
h SSE2

Coppermine 30003000 2.032.03 50005000 2.092.09

PowerPC 970 30003000 2.042.04 50005000 1.441.44
Intel

Woodcrest 30003000 1 811 81 50005000 2 182 18have SSE2
• 2 flops/cycle DP
• 4 flops/cycle SP

Woodcrest 30003000 1.811.81 50005000 2.182.18

Intel XEON 30003000 2.042.04 50005000 1.821.82
Intel Centrino

Duo 30003000 2.712.71 50005000 2.212.21

Single precision is faster because:
• Higher parallelism in SSE/vector units

• IBM PowerPC has
AltiVec
• 8 flops/cycle SP

4 fl / l DP
g p

• Reduced data motion
• Higher locality in cache

• 4 flops/cycle DP
• No DP on AltiVec

32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
• A long time ago 32 bit floating point was

used
S ill d i i ifi b li i dStill used in scientific apps but limited

• Most apps use 64 bit floating point
Accumulation of round off errorAccumulation of round off error

• A 10 TFlop/s computer running for 4 hours performs > 1
Exaflop (1018) ops.

Ill conditioned problemsp
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

• Sometimes need extended precision (128 bit fl pt)Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in
some parts

• Mixed precision a possibility
21

• Mixed precision a possibility
Approximate in lower precision and then refine
or improve solution to high precision.

Idea Goes Something Like This…Idea Goes Something Like This…
• Exploit 32 bit floating point as much as

possible.
Especially for the bulk of the computation

• Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

• Intuitively:
Compute a 32 bit result,
C l l t ti t 32 bit lt i Calculate a correction to 32 bit result using
selected higher precision and,
Perform the update of the 32 bit results with the

22

Perform the update of the 32 bit results with the
correction using high precision.

MixedMixed--PrecisionPrecision Iterative RefinementIterative Refinement
It ti fi t f d t A b k thi

L U = lu(A) SINGLE O(n3)
(2)

• Iterative refinement for dense systems, Ax = b, can work this
way.

x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

L\(U\) SINGLE O(2)z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

ENDEND

MixedMixed--PrecisionPrecision Iterative RefinementIterative Refinement
It ti fi t f d t A b k thi

L U = lu(A) SINGLE O(n3)
(2)

• Iterative refinement for dense systems, Ax = b, can work this
way.

x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

L\(U\) SINGLE O(2)z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

ENDEND

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.
It can be shown that using this approach we can compute the solution g pp p
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision() p
• O(n2) work is done in high precision

• Problems if the matrix is ill-conditioned in sp; O(108)

Results for Results for Multiple Precision Multiple Precision
Iterative RefinementIterative Refinement

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf)3 Sun UltraSPARC IIe (Sunperf)
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 C X1 (lib i)7 Cray X1 (libsci)
8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

New routines in LAPACK that do this for LU and LLT

What about the Cell?What about the Cell?

Power PC at 3 2 GHz• Power PC at 3.2 GHz
DGEMM at 5 Gflop/s
Altivec peak at 25.6 Gflop/sp p

• Achieved 10 Gflop/s SGEMM

• 8 SPUs
204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point;
(Single Precision SP)

d b l lAnd 64 bit floating point runs at 14.6 Gflop/s
total for all 8 SPEs!!

• Divide SP peak by 14; factor of 2 because of DP and 7
because of latency issues

26

because of latency issues

IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
250

200

SP Peak (204 Gflop/s)

SP Ax=b IBM
30

8 SGEMM (Embarrassingly Parallel)

100

150

G
Fl

op
/s DP Peak (15 Gflop/s)

DP Ax=b IBM

.30 secs

50

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

3.9 secs

27

Matrix Size

IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
250

200

SP Peak (204 Gflop/s)
SP Ax=b IBM

30

8 SGEMM (Embarrassingly Parallel)

100

150

G
Fl

op
/s

DSGESV
DP Peak (15 Gflop/s)
DP Ax=b IBM

.30 secs

.47 secs

50

100

8.3X

0
0 500 1000 1500 2000 2500 3000 3500 4000 4500

3.9 secs

28

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Matrix Size

CholeskyCholesky on the Cellon the Cell, , Ax=b, A=AAx=b, A=ATT, , xxTTAxAx > 0> 0

Single precision performance

Mixed precision performance using iterative refinement
Method achieving 64 bit accuracy

33 29
For the SPE’s standard C code and C language SIMD extensions (intrinsics)

CholeskyCholesky -- Using 2 Cell ChipsUsing 2 Cell Chips

30

Intriguing PotentialIntriguing Potential
• Exploit lower precision as much as possible

Payoff in performance
• Faster floating point g p
• Less data to move

• Automatically switch between SP and DP to match
the desired accuracythe desired accuracy

Compute solution in SP and then a correction to the
solution in DP

• Potential for GPU FPGA special purpose processorsPotential for GPU, FPGA, special purpose processors
What about 16 bit floating point?

• Use as little you can get away with and improve the accuracy

• Applies to sparse direct and iterative linear systems • Applies to sparse direct and iterative linear systems
and Eigenvalue, optimization problems, where
Newton’s method is used.

31 Correction = - A\(b – Ax)

Conclusions Conclusions
• For the last decade or more, the research

investment strategy has been investment strategy has been
overwhelmingly biased in favor of hardware.

• This strategy needs to be rebalanced -gy
barriers to progress are increasingly on the
software side.

• Moreover, the return on investment is more
favorable to software.

Hardware has a half-life measured in years, while
software has a half-life measured in decades.

• High Performance Ecosystem out of balanceg y
Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications

Collaborators / SupportCollaborators / Support

Alfredo Buttari, UTK
J li L g Julien Langou,

UColorado
Julie Langou, UTKg ,
Piotr Luszczek,

MathWorks
J k b K k UTKJakub Kurzak, UTK
Stan Tomov, UTK

33

