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OutlineOutline

• Top500 Resultsp
• Four Important Concepts that Will 

Effect Math SoftwareEffect Math Software
Effective Use of Many-Core
Exploiting Mixed Precision in Our Exploiting Mixed Precision in Our 
Numerical Computations
Self Adapting / Auto Tuning of SoftwareSelf Adapting / Auto Tuning of Software
Fault Tolerant Algorithms
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H. Meuer, H. Simon, E. Strohmaier, & JDH. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerfulg p
Computers in the World

- Yardstick: Rmax from LINPACK MPPYardstick: Rmax from LINPACK MPP
Ax=b, dense problem TPP performance

- Updated twice a year
SC‘ i h S i b

Size
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SC‘xy in the States in November
Meeting in Germany in June

3- All data available from www.top500.org



Performance Development
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Performance Projection
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Chips Used in Each of the 500 Systems

Intel EM64T

96% = 58% Intel 
17% IBM 
21% AMD46%
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Interconnects / Systems
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GigE + Infiniband + Myrinet = 76%



IncreaseIncrease

Increasing the number of gates into a tight knot and decreasing the cycle time of the processor
Power ∝Frequency3

Lower Lower 
VoltageVoltage

Increase Increase 
Clock RateClock Rate
& Transistor & Transistor 

DensityDensityDensityDensity

We have seen increasing number of gates on a 
chip and increasing clock speed.Cache Cache

Heat becoming an unmanageable problem, Intel 
Processors > 100 Watts

Core Core Core

C1 C2 C1 C2 We will not see the dramatic increases in clock 
speeds in the future.

However, the number of                                            

C1 C2

Cache

C1 C2

Cache

C1 C2

C3 C4

C1 C2

C3 C4
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gates on a chip will                                                
continue to increase.C3 C4 C3 C4

C1 C2

C3 C4

C1 C2

C3 C4



80 Core80 Core
• Intel’s 80 

Core chipCore chip
1   Tflop/s
62  Watts62  Watts
1.2 TB/s 
internal BWinternal BW
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What’s Next?What’s Next?
All Large CoreAll Large Core

Mixed LargeMixed Large
andand
Small CoreSmall Core Many Small CoresMany Small CoresS all Co eS all Co e Many Small CoresMany Small Cores

All Small CoreAll Small Core

Different Classes of Chips
H

+ 3D Stacked Many Floating-

Home
Games / Graphics
Business 
Scientific

SRAMSRAM

MemoryPoint Cores



Major Changes to SoftwareMajor Changes to Software
• Must rethink the design of our 

softwaresoftware
Another disruptive technology
• Similar to what happened with cluster 

computing and message passing
Rethink and rewrite the applications, 
algorithms  and softwarealgorithms, and software

• Numerical libraries for example will 
changechange

For example, both LAPACK and 
ScaLAPACK will undergo major changes 

11

g j g
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A New Generation of Software:A New Generation of Software:

Algorithms follow hardware evolution in time

LINPACK (80’s)
(Vector operations)

Rely on 
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (90’s) Rely on LAPACK (90 s)
(Blocking, cache 
friendly)

Rely on 
- Level-3 BLAS 

operations

PLASMA (00’s)
New Algorithms 
(many-core friendly)

Rely on 
- a DAG/scheduler
- block data layout

some extra kernels- some extra kernels
Those new algorithms 

- have a very low granularity, they scale very well (multicore, petascale computing, … )
- removes a lots of dependencies among the tasks, (multicore, distributed computing)

avoid latency (distributed computing out of core)- avoid latency (distributed computing, out-of-core)
- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.



A New Generation of Software:A New Generation of Software:
Parallel Linear Algebra Software for Parallel Linear Algebra Software for MulticoreMulticore Architectures (PLASMA)Architectures (PLASMA)

Algorithms follow hardware evolution in time

LINPACK (80’s)
(Vector operations)

Rely on 
Level 1 BLAS(Vector operations) - Level-1 BLAS

operations

LAPACK (90’s) Rely on LAPACK (90 s)
(Blocking, cache 
friendly)

Rely on 
- Level-3 BLAS 

operations

PLASMA (00’s)
New Algorithms 
(many-core friendly)

Rely on 
- a DAG/scheduler
- block data layout

some extra kernels- some extra kernels
Those new algorithms 

- have a very low granularity, they scale very well (multicore, petascale computing, … )
- removes a lots of dependencies among the tasks, (multicore, distributed computing)

avoid latency (distributed computing out of core)- avoid latency (distributed computing, out-of-core)
- rely on fast kernels 

Those new algorithms need new kernels and rely on efficient scheduling algorithms.



Steps in the LAPACK LUSteps in the LAPACK LU
DGETF2 LAPACK

(Factor a panel)

DLSWP LAPACK
(B k d )

DLSWP LAPACK

(Backward swap)

DLSWP LAPACK
(Forward swap)

DTRSM BLAS
(Triangular solve)

14
DGEMM BLAS

(Matrix multiply)



LU Timing Profile (4 processor system)LU Timing Profile (4 processor system)
Threads – no lookahead

1D decomposition and SGI OriginTime for each component
DGETF2
DLASWP(L)
DLASWP(R)
DTRSM
DGEMM

DGETF2

DLSWP

DLSWP

DTRSM

DGEMMBulk Sync PhasesBulk Sync Phases



Adaptive Lookahead Adaptive Lookahead -- DynamicDynamic

16Event Driven MultithreadingEvent Driven Multithreading
Reorganizing 

algorithms to use 
this approach



ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution
A

C

A

B C

T TT Fork-Join – parallel BLAS

Time

Experiments on Experiments on 
17

pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown 
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads



ForkFork--Join vs. Dynamic ExecutionJoin vs. Dynamic Execution
A

C

A

B C

T TT Fork-Join – parallel BLAS

Time

DAG-based – dynamic scheduling

Experiments on Experiments on 

Time 
saved
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pe e ts ope e ts o
Intel’s Quad Core Clovertown Intel’s Quad Core Clovertown 
with 2 Sockets w/ 8 Treadswith 2 Sockets w/ 8 Treads



With With the the Hype on Hype on Cell & PS3Cell & PS3
We Became Interested We Became Interested We Became Interested We Became Interested 

• The PlayStation 3's CPU based on a "Cell“ processor
• Each Cell contains a Power PC processor and 8 SPEs. (SPE is processing unit, 

SPE: SPU + DMA engine)
An SPE is a self contained vector processor which acts independently from the 
others. 

• 4 way SIMD floating point units capable of a total of 25.6 Gflop/s @ 3.2 GHZ

204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; (Single Precision SP) 
And 64 bit floating point runs at 14.6 Gflop/s total for all 8 SPEs!! 

• Divide SP peak by 14; factor of 2 because of DP and 7 because of latency issues

SPE ~ 25 Gflop/s peak
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Performance of Single Precision Performance of Single Precision 
on Conventional Processorson Conventional Processorson Conventional Processorson Conventional Processors

• Realized have the 
similar situation on 
our commodity 

SizeSize SGEMM/SGEMM/
DGEMMDGEMM SizeSize SGEMV/SGEMV/

DGEMVDGEMV
AMD Opteronour commodity 

processors.
• That is, SP is 2X as 

fast as DP on many 
systems

AMD Opteron
246 30003000 2.002.00 50005000 1.701.70

UltraSparc-IIe 30003000 1.641.64 50005000 1.661.66
Intel PIII systems

• The Intel Pentium 
and AMD Opteron
h  SSE2

Coppermine 30003000 2.032.03 50005000 2.092.09

PowerPC 970 30003000 2.042.04 50005000 1.441.44
Intel 

Woodcrest 30003000 1 811 81 50005000 2 182 18have SSE2
• 2 flops/cycle DP
• 4 flops/cycle SP

Woodcrest 30003000 1.811.81 50005000 2.182.18

Intel XEON 30003000 2.042.04 50005000 1.821.82
Intel Centrino

Duo 30003000 2.712.71 50005000 2.212.21

Single precision is faster because:
• Higher parallelism in SSE/vector units

• IBM PowerPC has 
AltiVec
• 8 flops/cycle SP

4 fl / l  DP
g p

• Reduced data motion 
• Higher locality in cache

• 4 flops/cycle DP
• No DP on AltiVec



32 or 64 bit Floating Point Precision?32 or 64 bit Floating Point Precision?
• A long time ago 32 bit floating point was 

used
S ill d i  i ifi   b  li i dStill used in scientific apps but limited

• Most apps use 64 bit floating point
Accumulation of round off errorAccumulation of round off error

• A 10 TFlop/s computer running for 4 hours performs > 1 
Exaflop (1018) ops. 

Ill conditioned problemsp
IEEE SP exponent bits too few (8 bits, 10±38)
Critical sections need higher precision

• Sometimes need extended precision (128 bit fl pt)Sometimes need extended precision (128 bit fl pt)
However some can get by with 32 bit fl pt in 
some parts

• Mixed precision a possibility
21

• Mixed precision a possibility
Approximate in lower precision and then refine 
or improve solution to high precision.



Idea Goes Something Like This…Idea Goes Something Like This…
• Exploit 32 bit floating point as much as 

possible.
Especially for the bulk of the computation

• Correct or update the solution with selective 
use of 64 bit floating point to provide a 
refined results

• Intuitively: 
Compute a 32 bit result, 
C l l t   ti  t  32 bit lt i  Calculate a correction to 32 bit result using 
selected higher precision and,
Perform the update of the 32 bit results with the 

22

Perform the update of the 32 bit results with the 
correction using high precision. 



MixedMixed--PrecisionPrecision Iterative RefinementIterative Refinement
It ti  fi t f  d  t    A   b   k thi  

L U = lu(A) SINGLE O(n3)
( 2)

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

L\(U\ ) SINGLE O( 2)z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

ENDEND



MixedMixed--PrecisionPrecision Iterative RefinementIterative Refinement
It ti  fi t f  d  t    A   b   k thi  

L U = lu(A) SINGLE O(n3)
( 2)

• Iterative refinement for dense systems,   Ax = b, can work this 
way.

x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

L\(U\ ) SINGLE O( 2)z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

ENDEND

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.
It can be shown that using this approach we can compute the solution g pp p
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision( ) p
• O(n2) work is done in high precision

• Problems if the matrix is ill-conditioned in sp; O(108)



Results for Results for Multiple Precision Multiple Precision 
Iterative RefinementIterative Refinement

Architecture (BLAS)
1 Intel Pentium III Coppermine (Goto)
2 Intel Pentium III Katmai (Goto)
3 Sun UltraSPARC IIe (Sunperf)3 Sun UltraSPARC IIe (Sunperf) 
4 Intel Pentium IV Prescott (Goto)
5 Intel Pentium IV-M Northwood (Goto)
6 AMD Opteron (Goto)
7 C X1 (lib i)7 Cray X1 (libsci)
8 IBM Power PC G5 (2.7 GHz) (VecLib)
9 Compaq Alpha EV6 (CXML)
10 IBM SP Power3 (ESSL)
11 SGI Octane (ATLAS)

New routines in LAPACK that do this for LU and LLT



What about the Cell?What about the Cell?

Power PC at 3 2 GHz• Power PC at 3.2 GHz
DGEMM at 5 Gflop/s
Altivec peak at 25.6 Gflop/sp p

• Achieved 10 Gflop/s SGEMM

• 8 SPUs
204 8 Gflop/s peak!204.8 Gflop/s peak!
The catch is that this is for 32 bit floating point; 
(Single Precision SP) 

d b l lAnd 64 bit floating point runs at 14.6 Gflop/s
total for all 8 SPEs!! 

• Divide SP peak by 14; factor of 2 because of DP and 7 
because of latency issues

26

because of latency issues



IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
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Matrix Size



IBM Cell 3.2 GHz, Ax = bIBM Cell 3.2 GHz, Ax = b
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CholeskyCholesky on the Cellon the Cell, , Ax=b, A=AAx=b, A=ATT, , xxTTAxAx > 0> 0

Single precision performance

Mixed precision performance using iterative refinement 
Method achieving 64 bit accuracy

33 29
For the SPE’s standard C code and C language SIMD extensions (intrinsics) 



CholeskyCholesky -- Using 2 Cell ChipsUsing 2 Cell Chips
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Intriguing PotentialIntriguing Potential
• Exploit lower precision as much as possible

Payoff in performance
• Faster floating point g p
• Less data to move

• Automatically switch between SP and DP to match 
the desired accuracythe desired accuracy

Compute solution in SP and then a correction to the 
solution in DP

• Potential for GPU  FPGA  special purpose processorsPotential for GPU, FPGA, special purpose processors
What about 16 bit floating point?

• Use as little you can get away with and improve the accuracy

• Applies to sparse direct and iterative linear systems • Applies to sparse direct and iterative linear systems 
and Eigenvalue, optimization problems, where 
Newton’s method is used.

31 Correction = - A\(b – Ax)



Conclusions Conclusions 
• For the last decade or more, the research 

investment strategy has been investment strategy has been 
overwhelmingly biased in favor of hardware. 

• This strategy needs to be rebalanced -gy
barriers to progress are increasingly on the 
software side.  

• Moreover, the return on investment is more 
favorable to software.

Hardware has a half-life measured in years, while 
software has a half-life measured in decades.

• High Performance Ecosystem out of balanceg y
Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications
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