
Exploring the Cell with HPEC Challenge Benchmarks
Sharon M. Sacco, Glenn Schrader, and Jeremy Kepner

MIT Lincoln Laboratory
{ssacco, gschrad, kepner}@ll.mit.edu

Abstract
New architectures require thoughtful testing to explore the
performance potential of the processor. Here the HPEC
Challenge Benchmarks are used to explore the Cell
processor to understand the realistic performance as well as
how that performance can be attained. More specifically,
for the time domain FIR benchmark, we find that a
significant fraction (86%) of the peak performance can be
achieved (as expected). However, this performance does
come at significant coding cost.

Introduction to Cell
The Cell processor, a joint venture among IBM, Sony, and
Toshiba, is an exciting, commercially available multi-
processor on a single chip. A simple block diagram of its
configuration is shown in Fig. 1.

 Fig. 1 Block Diagram for Cell Processor (adapted from IBM’s
“Cell Broadband Engine Hardware Initialization Guide”)

Each Cell processor consists of a PowerPC Processing
Element (PPE), eight Synergistic Processing elements, an
Element Interconnect Bus (EIB), a Memory Interface
Controller (MIC) with XIO, and a Broadband Engine
Interface (BEI) with FlexIO.

The PPE has a 64-bit PowerPC with 32 KB L1 data and
instruction caches and a 512 KB unified L2 cache. The L1
instruction cache is two-way set associative. The L1 data
cache is four-way set associative and write through. The
L2 cache can be configured to be eight-way set associative
and write back. Cache lines in all caches are 128 bytes. The
PPE can read 32-bytes per cycle and store 16-bytes per
cycle.

The PPE also supports the Vector/SIMD Multimedia
Extensions. There are some subtle differences in this
implementation when compared to other implementations.
This version does not generate floating point exception
interrupts, even when JAVA mode is selected.

Each SPE consists of the Synergistic Processing Unit
(SPU), 256KB of local store (LS), and a Memory Flow

Controller (MFC) that provides an interface between the
SPU and anything connected to the EIB. The MFC has built
in DMA engines that can deliver information to or from
main memory or other processors. For general processor to
processor DMAs, memory must be aliased.

The SPU is a vector computational unit with 128 16-byte
SIMD registers. While there are similarities to the vector
unit on the PPE, they are not the same. Each has a unique
instruction set with little exact overlap. While the PPE
vector unit is stronger in permutation and summing over
registers, the SPU has a rich set of instructions with
immediate values. The SPU supports all data types found
on the PPE’s vector unit plus 64-bit floating point.
However, there is very limited support for 8-bit integer.

The SIMD register set is the universal register set for most
things on the SPU. As a result, the instructions support
scalar operations such as addressing for loads and stores,
loop control, and conditional results in the SIMD registers.
Generally, these scalar quantities will occupy a register by
themselves.

The EIB consists of four ring buses, two running clockwise
and two running counter clockwise. Each ring is 16-bytes
wide and can transfer 128 bytes at a time. The EIB’s
maximum bandwidth is 96 bytes per cycle. It supports up
to 100 outstanding DMA transfers from the SPEs at any
given time.

HPEC Challenge Benchmark Suite
The HPEC Challenge Benchmark Suite[5] is a publicly
available collection of common signal processing
algorithms to use to compare HPEC systems. It consists of
eight kernel benchmarks (finite impulse response filtering
(FIR), QR decomposition (QR), singular value
decomposition (SVD), constant false-alarm rate detection
(CFAR), pattern matching (PM), genetic algorithm (GA),
data base (DB), corner turn (CT)) as well as a SAR System
Benchmark. All of these benchmarks have their roots in
DARPA’s Polymorphous Computing Architecture (PCA)
or High-Productivity Computing Systems (HPCS)
programs.

Time Domain FIR on a Single SPU
Marketing brochures always quote a theoretical maximum
speed for a processor based on the number of floating point
operations that can be started in a single cycle times the
frequency of the processor. Most processor designs cannot
sustain these speeds other than for a few cycles at most.

This work is sponsored by AFRL under Air Force contract FA8721-050C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and not necessarily endorse by the United States Government.

mailto:kepner%7D@ll.mit.edu

The question becomes how do we measure practical speeds
that are the best?

Time domain FIR filters are the most efficient algorithms
on floating point processors given that the numbers of
additions and multiplies are nearly the same. This is the
heart of the time domain version of the HPEC Challenge
benchmark FIR. The code for the Cell SPU was written for
split complex format in three versions, simple scalar C, a
simple version using the SIMD C extensions, and a highly
optimized hand coded assembly version. This format was
chosen since it does not require extra data movement to
separate real and imaginary parts. Since the purpose of this
test was to measure the practical maximum performance of
the SPU, only the FIR was timed. The number of FIR
filters was chosen not to exceed the SPU local memory.

Coding productivity is a requirement for any processor. If
coding is too difficult, the processor will require serious
support from professional algorithm groups. Users who do
code in these circumstances are less productive than for
processors well designed for compilers. Fig. 2 describes
the ease of coding for the Cell SPU. The lines of code for
each style of time-domain FIR do not include comments or
blank lines. Note that the SIMD C and assembly programs
have size restrictions. As another measure of coding
productivity, the units of time to describe how long it takes
to do a task are given for design, coding and debugging for
each implementation.

The efficiency of the code (the factor of peak performance)
is also included. This was measured on a Mercury “Cell
Technology Evaluation System” running at 2.4 GHz. The
clock used for timing was the decrementer register on the
SPU. This clock was chosen for its proximity to the
calculation which reduces the overhead in reading it. Due
to the small size of the LS, the number of filters specified in
the time domain FIR benchmark could not be supported.
The efficiency was measured for a case with kernel size 12,
input vector size 1024, and two filters. This was repeated
10 times to form the timing.

Lines
of
Code

Design
Time

Coding
Time

Debug
Time

Efficiency
of Code

C 33 Minute Minute Minute .014

SIMD
C

110 Hour Hour Minute .27

Hand
coding

371 Hour Day Day .86

Fig. 2 Ease of Coding and Performance Metrics for single SPU
Time Domain FIR

Note that the efficiency of the hand coding is 14% lower
than the theoretical maximum limit. Most of this is due to
an inherent inefficiency in the architecture of the Cell. In
the Cell, at most only a single computation can be started
on any given cycle. The consequence of this design choice
is that address updates and loop counters cannot be covered

by floating point operations. Loop unrolling will minimize
this effect, but it will always be visible.

Parallelizing the Time Domain FIR
The time domain FIR will be parallelized across multiple
SPEs. This decomposition is known to be “embarrassingly
parallel”. However, despite the simplicity of the
decomposition, how that is implemented and the resulting
performance based on those choices will be explored. How
many processors for a given size, how does the DMA size
affect the performance, and can the DMAs be covered by
computation are all important questions that demand
exploration.

Other Benchmarks
Other HPEC Challenge Benchmark kernels will also be
examined. These will include the frequency domain FIR,
CFAR and PM. These benchmarks should verify the
lessons from time domain FIR and perhaps expand
understanding of the Cell.

Cell Lessons Learned
In performing these explorations, much can be learned
about the processor. The most noticeable fact is that
although the SPU can process normal “vanilla” C code, it
doesn’t do it well. Vectorization techniques will improve
performance noticeably, even if limited to simple C
extension programs. However, approaching the theoretical
limit of performance is limited by the architecture.

Maximizing the use of the SPUs will also require parallel
techniques. Given the small size of the local stores and the
number of available SPUs, an application of any reasonable
size will benefit from optimizing DMA techniques as well
as spreading the application over many processors, if
possible.

Timers are available on both the PPU and the SPUs. Which
clocks are chosen for timing will depend on the locality of
the code that is timed, the time length, and the existence of
other applications such as profilers that access a particular
clock.

References
[1] International Business Machines Corp, Sony Computer

Entertainment Corp., and Toshiba Corp., “Cell Broadband
Engine Architecture”, v1.0, © 2005.

[2] International Business Machines Corp, Sony Computer
Entertainment Corp., and Toshiba Corp., “Cell Broadband
Engine Hardware Initialization Guide”, v. 1.3, © 2006.

[3] International Business Machines Corp, Sony Computer
Entertainment Corp., and Toshiba Corp., “Cell Broadband
Engine Programming Handbook”, v. 1.0, © 2006.

[4] International Business Machines Corp, Sony Computer
Entertainment Corp., and Toshiba Corp., “Synergistic
Processor Unit Instruction Set Architecture”, v. 1.1, © 2006.

[5] Ryan Haney, Theresa Meuse, Jeremy Kepner and James
Lebak, “The HPEC Challenge Benchmark Suite”, High
Performance Embedded Computing (HPEC) Workshop,
Lexington, MA. 20 – 22 September 2005.

