

Spaceborne Processor Array in Multi-Functional Structure (SPAMS)

Edward Chow, Don Schatzel, Bill Whitaker

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91109

edward.chow@jpl.nasa.gov

Thomas Sterling

Center for Computation & Technology, Department of Computer Science, Louisiana State University 216 Johnston Hall, Baton Rouge, LA 70803

tron@cct.lsu.edu

High Performance Embedded Computing (HPEC) Workshop

19-21 September, 2006

UNCLASSIFIED

- Future NASA missions require high performance on-board processing capability yet will be severely limited by mass.
 - Autonomous Science
 - Constellation Control
 - Formation Flying
 - Virtual Presence
- DoD space programs such as Space Superiority can also benefit from high performance on-board processing.
 - Space Situational Awareness
 - Real-time Spacecraft Tracking
 - Autonomous Operations Under Interferences

Future Autonomous Mission Drivers

- Interplanetary Navigation
 - Low thrust in-orbit
 - Lagrange point

• Entry Descent & Landing

- Flight control thru disparate flight regimes
- Landing zone identification
- Lateral winds
- Soft touchdown
- Surface Mobility
 - Terrain traversal
 - Obstacle avoidance
 - Science Target identification
 - Exploration sequencing

- Teraflops' in space
 - Satisfy wide range of mission drivers
- Ultra low energy per operation
 - Towards > 100 Gops/watt
- Numeric and Symbolic high performance computing
 - Numeric for remote sensor data analysis and knowledge extraction
 - Symbolic for real-time context-aware planning and goal-directed contingency response
- Long duration fix-less operation
 - Multi-decade
- Size and weight
 - Small enough to fit in constrained volume
 - Light enough to be applied to virtually all autonomous mission profiles and costs
- Scalable
 - Up to high performance in space
 - Down to smallest possible mission packages
 - Single software stack hierarchy and cognition model
 - High reliability software
 - Low software development time

Current Spacecraft Electronics

- Centrally Located Chassis and Backplanes.
- Aluminum or Titanium Based Structural Members.
- Heavy and Complicated
 Wiring Cables.
- High Performance Computers
 Often Sacrificed During
 Spacecraft Trade-off Analysis.

- The NASA, AFRL, MDA, SMC, and DARPA have also been supporting the technology development of the MFS.
 - NASA Deep Space–1, NASA EOS-1, Boeing Delta IV ELV, and Global Hawk UAV.
- Spacecraft built with MFS can have:
 - >50% mass reduction.
 - >2x volume saving.
 - Support mass production of spacecraft for constellations
- Most MFS work focuses on embedding lightweight, flexible circuits into composite structures.

*

- On-demand supercomputer level performance aboard spacecraft.
- High performance processing without increase to spacecraft mass.
- Dynamic ultra low power consumption.
- Long lifetime fault tolerance.
- High survivability in hostile environments.

Material	Thermal Conductivity (W/m*K)	CTE (ppm/C)	Density (g/cm^3)	Tensile Modulus (msi)
ST325 [1]	325	-1.15	2.17	114.0
FR4 [1]	8.0	17.00	1.80	2.4
Polyimide [1,2]	0.3	16.50 X,Y dir	1.70	3.0
Copper [1]	385	17.00	8.92	12.0
AI 100%[1]	240	24.00	2.70	10.2

References

[1] Technology Overview, from Thermal Works website: http://www.thermalworks.com/marketing/STABLCOR%20Properties% 20Chart.pdf accessed 4/20/06

[2] Internal JPL verbal communication- Results of TMA testing

UNCLASSIFIED

- Direct Die Mounting on PC Boards.
- Unlimited Expandability for Array Processors.
- High Survivability.
- Integrate with Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single, system superarchitecture.
 - Ultra High Performance
 - Ultra Low Power
 - Long Duration Fault Tolerance.

MIND Strategy

Multi-Core Memory

- Very low power
- High memory bandwidth
- Low memory access latency
- Single system image for scalable computation

• Graceful Degradation

- Exploits repetitive structures and redundant data paths
- High reliability with no maintenance
- Reconfiguration for fault isolation

Active Power management

- Decrease average power consumption
- Real time processing
 - Control of actuators and post sensor processing
- Advanced execution model for efficient scalability
 - Message driven-computing split-transaction
 - Multithreaded task control
 - Lightweight synchronization
 - Dynamic parallelism

• Parcel active message driven computing

- Decoupled split-transaction execution
- System wide latency hiding
- Move work to data instead of data to work to module control unit

• Multithreaded control

- Unified dynamic mechanism for resource management
- Latency hiding
- Real time response

• Virtual to physical address translation in memory

- Global distributed shared memory thru distributed directory table
- Dynamic page migration
- Wide registers serve as context sensitive TLB

• Graceful degradation for Fault tolerance

- Graceful degradation through highly replicated fine-grain elements.
- Hardware architecture includes fault detection mechanisms.
- Software tags for bit-checking at hardware speeds; includes memory scrubbing.
- Virtual data and tasks permits rapid reconfiguration without software regeneration.

MIND Multi-Core Chip Layout

SPAMS Architecture

SPAMS Implementations

3-Point Bend Test: Polyimide Box Beam

Where: F_f = Fracture Force L = length h_o =thickness of beam I = moment of inertia C = constant C = 4 (3-pt bend)

Test Set-up: Start

Test Set-up: Fracture

3-Point Bend Test: Polyimide Box Beam

Cantilever Test: Polyimide Box Beam

Test Set-up: Break

Cantilever Test: Polyimide Box Beam

Deflection (in)

UNCLASSIFIED

DL

- SPAMS can potentially provide high performance computing to spacecraft without sacrificing additional mass.
- Gilgamesh architecture allows SPAMS to provide high performance, low power, and long duration fault tolerance.
- We are building and testing different elements of the SPAMS.