
TC 1September 21, 2006 UNCLASSIFIED

Spaceborne Processor Array in Multi-
Functional Structure (SPAMS)

Edward Chow, Don Schatzel, Bill Whitaker
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109
edward.chow@jpl.nasa.gov

Thomas Sterling 
Center for Computation & Technology, 

Department of Computer Science, Louisiana State University
216 Johnston Hall, Baton Rouge, LA 70803

tron@cct.lsu.edu

High Performance Embedded Computing (HPEC) Workshop

19-21 September, 2006



TC 2September 21, 2006 UNCLASSIFIED

Introduction

• Future NASA missions require 
high performance on-board 
processing capability yet will 
be severely limited by mass.
– Autonomous Science
– Constellation Control
– Formation Flying
– Virtual Presence

• DoD space programs such as 
Space Superiority can also 
benefit from high performance 
on-board processing.
– Space Situational Awareness
– Real-time Spacecraft Tracking
– Autonomous Operations Under 

Interferences
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Future Autonomous Mission Drivers

• Interplanetary Navigation
– Low thrust in-orbit
– Lagrange point

• Entry Descent & Landing
– Flight control thru disparate 

flight regimes
– Landing zone identification
– Lateral winds
– Soft touchdown

• Surface Mobility
– Terrain traversal
– Obstacle avoidance
– Science Target identification
– Exploration sequencing
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Future Mission Requirements 
• Teraflops’ in space

– Satisfy wide range of mission drivers
• Ultra low energy per operation

– Towards > 100 Gops/watt
• Numeric and Symbolic high performance computing

– Numeric for remote sensor data analysis and knowledge extraction
– Symbolic for real-time context-aware planning and goal-directed 

contingency response
• Long duration fix-less operation

– Multi-decade
• Size and weight

– Small enough to fit in constrained volume
– Light enough to be applied to virtually all autonomous mission profiles 

and costs
• Scalable

– Up to high performance in space
– Down to smallest possible mission packages
– Single software stack hierarchy and cognition model

• High reliability software
• Low software development time
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Current Spacecraft Electronics

• Centrally Located Chassis and 
Backplanes.

• Aluminum or Titanium Based 
Structural Members.

• Heavy and Complicated 
Wiring Cables.

• High Performance Computers 
Often Sacrificed During 
Spacecraft Trade-off Analysis.
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Multi-Functional Structure (MFS) 
Technologies

• The NASA, AFRL, MDA, SMC, and DARPA have also 
been supporting the technology development of the 
MFS .
– NASA Deep Space–1, NASA EOS-1, Boeing Delta IV ELV, 

and Global Hawk UAV.
• Spacecraft built with MFS can have:

– >50% mass reduction.
– >2x volume saving.
– Support mass production of spacecraft for constellations 

• Most MFS work focuses on embedding lightweight, 
flexible circuits into composite structures.

*

* AFRL
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SPAMS Objectives

• On-demand supercomputer level performance aboard 
spacecraft.

• High performance processing without increase to 
spacecraft mass.

• Dynamic ultra low power consumption.

• Long lifetime fault tolerance.

• High survivability in hostile environments.
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SPAMS Approach

• Instead of embedding flexible circuits into composite 
structures, SPAMS takes advantage of the strength 
characteristics from the new composite materials and 
builds the spacecraft structure members with printed 
circuit boards. 
– Direct Die Mounting on PC Boards.
– Unlimited Expandability for Array Processors.
– High Survivability.

• Integrate with Gilgamesh Memory, Intelligence, and 
Network Device (MIND) multi-core in-memory 
computer architecture into a single, system super-
architecture. 
– Ultra High Performance
– Ultra Low Power
– Long Duration Fault Tolerance.
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MIND Strategy
• Multi-Core Memory

– Very low power
– High memory bandwidth
– Low memory access latency
– Single system image for scalable computation

• Graceful Degradation
– Exploits repetitive structures and redundant data paths
– High reliability with no maintenance
– Reconfiguration for fault isolation

• Active Power management
– Decrease average power consumption

• Real time processing
– Control of actuators and post sensor processing

• Advanced execution model for efficient 
scalability

– Message driven-computing split-transaction
– Multithreaded task control
– Lightweight synchronization
– Dynamic parallelism
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MIND Architecture

• Parcel active message driven computing
– Decoupled split-transaction execution
– System wide latency hiding
– Move work to data instead of data to work

• Multithreaded control
– Unified dynamic mechanism for resource 

management
– Latency hiding
– Real time response

• Virtual to physical address translation in memory
– Global distributed shared memory thru distributed directory table
– Dynamic page migration
– Wide registers serve as context sensitive TLB

• Graceful degradation for Fault tolerance
– Graceful degradation through highly replicated fine-grain elements. 
– Hardware architecture includes fault detection mechanisms.
– Software tags for bit-checking at hardware speeds; includes memory scrubbing. 
– Virtual data and tasks permits rapid reconfiguration without software 

regeneration.
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MIND Multi-Core Chip Layout
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SPAMS Architecture 
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SPAMS Implementations

Spacecraft instrument 
chassis  and structure 
members are made of 

fault tolerant high 
performance computer 

boards.

Wiring cables are built 
inside the structure 

elements.

3-Point Bend Test
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3-Point Bend Test: Polyimide Box Beam
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Where:
Ff= Fracture Force
L = length 
ho=thickness of beam
I = moment of inertia
C = constant
C = 4  (3-pt bend)
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3-Point Bend Test- 
Saw tooth- 3 Layers
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Cantilever Test: Polyimide Box Beam
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Where:
Ff= Fracture Force
L = length 
ho=thickness of beam
I = moment of inertia
C = constant
C = 1 for cantilever
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Cantilever Test: Sawtooth Edge- 3 Layers
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Conclusion

• SPAMS can potentially provide high performance 
computing to spacecraft without sacrificing additional 
mass.

• Gilgamesh architecture allows SPAMS to provide high 
performance, low power, and long duration fault 
tolerance.

• We are building and testing different elements of the 
SPAMS. 


