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Introduction 
Commodity Graphics Processing Units (GPUs) are 
application-specific processors that implement a 
standardized three-dimensional graphics rendering pipeline, 
and provide significant floating-point processing capacity at 
much lower cost, power consumption, and physical space 
compared to general purpose processors.  Recent changes in 
GPUs have increased programmability and flexibility in 
portions of the rendering pipeline, allowing non-graphics 
applications to exploit their computational capacity.  
Restrictions on the programming model, lack of appropriate 
tools, unusual performance behavior, and other factors 
make exploiting GPUs a costly, difficult, and time 
consuming process for application developers.  The Vector, 
Signal, and Image Processing Library (VSIPL) is an 
industry standard Application Programming Interface (API) 
for portable, high performance vector and matrix linear 
algebra and signal processing applications.  The High 
Performance Embedded Computing Software Initiative 
(HPEC-SI) is developing parallel and object oriented 
extensions to VSIPL with the goal of a unifying 
computation and communication in a single high 
performance, productive, and portable API.  The original 
VSIPL specification, advances to the VSIPL standard under 
the HPEC-SI program, and commodity graphics processors 
together constitute the basis of a system for enabling 
ubiquitous high-performance signal processing software 
development.  VSIPL establishes a functional basis that 
spans the majority of high performance signal processing 
tasks, the HPEC-SI program has developed important 
extensions to the VSIPL standard, and commodity GPUs 
enable wide distribution of computing systems with high 
computational capacity and low cost. 

Commodity Graphics Processors 
Commodity graphics processing units (GPUs) are 
application-specific processors that implement standardized 
three-dimensional rendering pipelines.  Recent generations 
of GPUs have added limited programmability to certain 
portions of the rendering pipeline.  This programmability 
can be exploited to cause the GPU to perform calculations 
unrelated to graphics.  After initial experiments 
demonstrated the computational potential of such an 
approach, GPU hardware vendors added, in subsequent 
generations, floating point pixel types, increased flexibility 
in execution models, and an array of tools that significantly 
expanded the number of computation problems that can be 
addressed by GPUs.  With enough flexibility established to 
perform general purpose computations, GPUs have become 
an attractive deployment platform candidate for signal 
processing applications.  The standard three-dimensional 
graphics rendering pipeline includes a stage that allows a 
final set of manipulations on each potential pixel (referred 

to as a “fragment” within OpenGL, one of the two standard 
graphics APIs), after all standard geometry, stenciling, 
lighting, and other fixed-function portions of the pipeline 
have been completed.  The commodity GPU vendors’ 
primary market use is high resolution video games, with up 
to two million pixels per rendering frame (1600 by 1200 
resolution) commonly supported.  As a result, the primary 
application has embarrassingly parallel characteristics, and 
GPU vendors have been successful in obtaining increased 
performance by increasing the degree of parallel 
computation dedicated to fragment processing.  This 
parallelization has been achieved by a variety of methods at 
the microarchitecture level, but is not exposed explicitly to 
any API.  Current generation GPUs have delivered 
observed performance of up to 250 GFLOPS on synthetic 
benchmarks, in comparison to a peak theoretical 
computation rate for a dual core Pentium 4, 3.46GHz CPU 
of approximately 28 GFLOPS.  In addition, GPU 
computational capacity is growing at a much faster pace 
than CPUs, so this gap is expected to continue and widen in 
the future.  Furthermore, GPUs deliver this performance at 
a cost that is a fraction of the cost of an additional 
standalone computer, or other high performance 
coprocessors, such as DSPs and FPGAs. 

Commodity GPU vendors hide many architectural details, 
and only expose programmatic access to the GPUs via two 
primary APIs, OpenGL and DirectX Graphics.  Both of 
these APIs are graphics-oriented and impose many 
programming restrictions and hurdles specific to graphics 
software.  They require an understanding of graphics 
programming to use, and force all non-graphics applications 
to be cast in terms of graphics operations, regardless of 
whether this step is required by the microarchitecture.  
Furthermore, there are restrictions to the execution model 
for fragment processing (such as looping constructs, 
conditional branching, and total program length), and 
optimization trade-offs that are often quite different from 
traditional processors.  The restrictions, performance 
characteristics, and optimization modes are typically 
hidden, or obscurely documented.  Delivering the 
performance capability of GPUs to deployed applications, 
therefore, has been difficult, expensive, and slow.  Most 
fielded systems include large portions of hand-coded 
optimizations, and are developed by a small number of 
domain experts.  This has limited the adoption of GPUs as 
fielded coprocessing accelerators.  Several efforts have 
been undertaken to expand the application development 
infrastructure available for GPUs, mostly focusing on 
compilers for new languages, such as BrookGPU, Sh, and 
R-Stream and special-purpose functional kernels, such as 
GPUFFTW.  An approach that has not been significantly 
explored for GPUs is Domain Specific Libraries (DSLs).  
DSLs provide an ideal connection between application 
domains, with relatively static functional spans, and widely 



 

 

varying architectures.  For each new hardware platform, 
only the specified functions must be redeveloped and re-
optimized, rather than all existing application software, or 
an entire compiler suite.  Improved infrastructure is 
required in order to deliver the full capabilities of GPUs to 
application developers. 

VSIPL++ is a Domain Specific Library that is ideally suited 
to exploit the capabilities of GPUs.  It is designed for signal 
processing, image processing, and linear algebra tasks that 
typically have similar levels of inherent parallelism to 
graphics rendering.  VSIPL++ includes explicit 
mechanisms for managing separate memory spaces, and 
presents a data and storage abstraction that maps well to 
both its target application space and the available data 
storage mechanisms on GPUs.  The elements of VSIPL++ 
that are specific to the C++ expansion and distinct from the 
original VSIPL are also particularly well suited to GPUs.  
GPUs impose relatively high per-loop, and per-data-access 
latency costs compared to general purpose processors. 
VSIPL++ includes provisions for expression-level 
specialization and loop fusion, which significantly mitigate 
these costs. 

Implementation & Methodology 
The implied execution and control model associated with 
VSIPL and VSIPL++ corresponds well with the control 
mechanisms that area available to applications for 
managing GPUs.  This allows a relatively simple & 
straightforward implementation of the data management 
and simpler math functions, leaving avenues for special-
purpose optimization and customization of time-critical and 
complex portions of the API.  GPU-VSIPL++ is 
implemented in a layered approach, using a modified 
version of the reference implementation of VSIPL++, 
created by CodeSourcery, LLC,  and a GPU-based 
implementation of portions of VSIPL (GPU-VSIPL).  GPU-
VSIPL blocks are implemented as OpenGL textures.  
vsip_admit and vsip_release create barrier OpenGL 
calls that move data to and from texture memory as needed.  
Blocks containing complex data types are implemented by 
creating two textures of the appropriate size, rather than one 
texture of twice the size, corresponding to the VSIP_SPLIT 
data storage rather than VSIP_INTERLEAVED, but is not 
relevant to the application programmer, except for 
optimizing VSIP_ADMIT and VSIP_RELEASE calls. 

Simple math operations among compatible views are 
implemented by causing an OpenGL rendering operation 
that renders a rectangle of the same size as the texture 
holding the block data referenced by the output view.  The 
input views are made available to the fragment processor 
via the texture containing the block associated with the 
view.  Any loop-invariant variables are set via Cg runtime 
calls to set uniform Cg types.  Data reads from input 
textures are implemented as texture sampling operations, 
and data are output by setting the values of the components 
of the output texture, corresponding to color in a graphics 

context.  The VSIPL operation is implemented as a Cg 
fragment program.   

Due to the restrictions placed on read and write patterns, 
many VSIPL operations can not be implemented as single 
render operations with simple Cg programs.  For example, 
any function that performs a reduction (e.g. 
vsip_vsumval_f) must create a temporary texture and 
perform multiple decimating render passes until only the 
desired number of elements remain.  Several variations of 
this approach are taken throughout the implementation.  
Some operations are more efficiently implemented as a Cg 
program that is constructed on the fly.  For example, the 
vsip_firflt_f suite of functions create a Cg program at the 
time the vsip_fir_f object is created, based on the filter 
length and kernel coefficients. 

Benchmarks 
Several simple GPU-VSIPL++ functions were 
benchmarked and compared to CPU-only execution of the 
reference VSIPL++ implementation, using the TASP-
VSIPL reference implementation as a backend  For small 
vector sizes, the per-operation cost dominates, and the 
CPU-only VSIPL++ outperforms the GPU-VSIPL++.  
However, for larger vector sizes, GPU-VSIPL++ allows 
significant speedups over the CPU-only implementation.  
Asymptotic speedups of 15-20x were delivered for simple 
vector operations, and as high as 79x for FIR operations on 
larger vectors.  Figure 1 shows the performance of a GPU-
VSIPL++ FIR filter, normalized against the CPU only 
implementation.    
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Figure 1: Normalized FIR performance 
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