
VSIPL++ Acceleration Using Commodity Graphics Processors
Dan Campbell

Georgia Tech Research Institute - Sensors and Electromagnetics Applications Laboratory
dan.campbell@gtrigatech.edu

Introduction
Commodity Graphics Processing Units (GPUs) are
application-specific processors that implement a
standardized three-dimensional graphics rendering pipeline,
and provide significant floating-point processing capacity at
much lower cost, power consumption, and physical space
compared to general purpose processors. Recent changes in
GPUs have increased programmability and flexibility in
portions of the rendering pipeline, allowing non-graphics
applications to exploit their computational capacity.
Restrictions on the programming model, lack of appropriate
tools, unusual performance behavior, and other factors
make exploiting GPUs a costly, difficult, and time
consuming process for application developers. The Vector,
Signal, and Image Processing Library (VSIPL) is an
industry standard Application Programming Interface (API)
for portable, high performance vector and matrix linear
algebra and signal processing applications. The High
Performance Embedded Computing Software Initiative
(HPEC-SI) is developing parallel and object oriented
extensions to VSIPL with the goal of a unifying
computation and communication in a single high
performance, productive, and portable API. The original
VSIPL specification, advances to the VSIPL standard under
the HPEC-SI program, and commodity graphics processors
together constitute the basis of a system for enabling
ubiquitous high-performance signal processing software
development. VSIPL establishes a functional basis that
spans the majority of high performance signal processing
tasks, the HPEC-SI program has developed important
extensions to the VSIPL standard, and commodity GPUs
enable wide distribution of computing systems with high
computational capacity and low cost.

Commodity Graphics Processors
Commodity graphics processing units (GPUs) are
application-specific processors that implement standardized
three-dimensional rendering pipelines. Recent generations
of GPUs have added limited programmability to certain
portions of the rendering pipeline. This programmability
can be exploited to cause the GPU to perform calculations
unrelated to graphics. After initial experiments
demonstrated the computational potential of such an
approach, GPU hardware vendors added, in subsequent
generations, floating point pixel types, increased flexibility
in execution models, and an array of tools that significantly
expanded the number of computation problems that can be
addressed by GPUs. With enough flexibility established to
perform general purpose computations, GPUs have become
an attractive deployment platform candidate for signal
processing applications. The standard three-dimensional
graphics rendering pipeline includes a stage that allows a
final set of manipulations on each potential pixel (referred

to as a “fragment” within OpenGL, one of the two standard
graphics APIs), after all standard geometry, stenciling,
lighting, and other fixed-function portions of the pipeline
have been completed. The commodity GPU vendors’
primary market use is high resolution video games, with up
to two million pixels per rendering frame (1600 by 1200
resolution) commonly supported. As a result, the primary
application has embarrassingly parallel characteristics, and
GPU vendors have been successful in obtaining increased
performance by increasing the degree of parallel
computation dedicated to fragment processing. This
parallelization has been achieved by a variety of methods at
the microarchitecture level, but is not exposed explicitly to
any API. Current generation GPUs have delivered
observed performance of up to 250 GFLOPS on synthetic
benchmarks, in comparison to a peak theoretical
computation rate for a dual core Pentium 4, 3.46GHz CPU
of approximately 28 GFLOPS. In addition, GPU
computational capacity is growing at a much faster pace
than CPUs, so this gap is expected to continue and widen in
the future. Furthermore, GPUs deliver this performance at
a cost that is a fraction of the cost of an additional
standalone computer, or other high performance
coprocessors, such as DSPs and FPGAs.

Commodity GPU vendors hide many architectural details,
and only expose programmatic access to the GPUs via two
primary APIs, OpenGL and DirectX Graphics. Both of
these APIs are graphics-oriented and impose many
programming restrictions and hurdles specific to graphics
software. They require an understanding of graphics
programming to use, and force all non-graphics applications
to be cast in terms of graphics operations, regardless of
whether this step is required by the microarchitecture.
Furthermore, there are restrictions to the execution model
for fragment processing (such as looping constructs,
conditional branching, and total program length), and
optimization trade-offs that are often quite different from
traditional processors. The restrictions, performance
characteristics, and optimization modes are typically
hidden, or obscurely documented. Delivering the
performance capability of GPUs to deployed applications,
therefore, has been difficult, expensive, and slow. Most
fielded systems include large portions of hand-coded
optimizations, and are developed by a small number of
domain experts. This has limited the adoption of GPUs as
fielded coprocessing accelerators. Several efforts have
been undertaken to expand the application development
infrastructure available for GPUs, mostly focusing on
compilers for new languages, such as BrookGPU, Sh, and
R-Stream and special-purpose functional kernels, such as
GPUFFTW. An approach that has not been significantly
explored for GPUs is Domain Specific Libraries (DSLs).
DSLs provide an ideal connection between application
domains, with relatively static functional spans, and widely

varying architectures. For each new hardware platform,
only the specified functions must be redeveloped and re-
optimized, rather than all existing application software, or
an entire compiler suite. Improved infrastructure is
required in order to deliver the full capabilities of GPUs to
application developers.

VSIPL++ is a Domain Specific Library that is ideally suited
to exploit the capabilities of GPUs. It is designed for signal
processing, image processing, and linear algebra tasks that
typically have similar levels of inherent parallelism to
graphics rendering. VSIPL++ includes explicit
mechanisms for managing separate memory spaces, and
presents a data and storage abstraction that maps well to
both its target application space and the available data
storage mechanisms on GPUs. The elements of VSIPL++
that are specific to the C++ expansion and distinct from the
original VSIPL are also particularly well suited to GPUs.
GPUs impose relatively high per-loop, and per-data-access
latency costs compared to general purpose processors.
VSIPL++ includes provisions for expression-level
specialization and loop fusion, which significantly mitigate
these costs.

Implementation & Methodology
The implied execution and control model associated with
VSIPL and VSIPL++ corresponds well with the control
mechanisms that area available to applications for
managing GPUs. This allows a relatively simple &
straightforward implementation of the data management
and simpler math functions, leaving avenues for special-
purpose optimization and customization of time-critical and
complex portions of the API. GPU-VSIPL++ is
implemented in a layered approach, using a modified
version of the reference implementation of VSIPL++,
created by CodeSourcery, LLC, and a GPU-based
implementation of portions of VSIPL (GPU-VSIPL). GPU-
VSIPL blocks are implemented as OpenGL textures.
vsip_admit and vsip_release create barrier OpenGL
calls that move data to and from texture memory as needed.
Blocks containing complex data types are implemented by
creating two textures of the appropriate size, rather than one
texture of twice the size, corresponding to the VSIP_SPLIT
data storage rather than VSIP_INTERLEAVED, but is not
relevant to the application programmer, except for
optimizing VSIP_ADMIT and VSIP_RELEASE calls.

Simple math operations among compatible views are
implemented by causing an OpenGL rendering operation
that renders a rectangle of the same size as the texture
holding the block data referenced by the output view. The
input views are made available to the fragment processor
via the texture containing the block associated with the
view. Any loop-invariant variables are set via Cg runtime
calls to set uniform Cg types. Data reads from input
textures are implemented as texture sampling operations,
and data are output by setting the values of the components
of the output texture, corresponding to color in a graphics

context. The VSIPL operation is implemented as a Cg
fragment program.

Due to the restrictions placed on read and write patterns,
many VSIPL operations can not be implemented as single
render operations with simple Cg programs. For example,
any function that performs a reduction (e.g.
vsip_vsumval_f) must create a temporary texture and
perform multiple decimating render passes until only the
desired number of elements remain. Several variations of
this approach are taken throughout the implementation.
Some operations are more efficiently implemented as a Cg
program that is constructed on the fly. For example, the
vsip_firflt_f suite of functions create a Cg program at the
time the vsip_fir_f object is created, based on the filter
length and kernel coefficients.

Benchmarks
Several simple GPU-VSIPL++ functions were
benchmarked and compared to CPU-only execution of the
reference VSIPL++ implementation, using the TASP-
VSIPL reference implementation as a backend For small
vector sizes, the per-operation cost dominates, and the
CPU-only VSIPL++ outperforms the GPU-VSIPL++.
However, for larger vector sizes, GPU-VSIPL++ allows
significant speedups over the CPU-only implementation.
Asymptotic speedups of 15-20x were delivered for simple
vector operations, and as high as 79x for FIR operations on
larger vectors. Figure 1 shows the performance of a GPU-
VSIPL++ FIR filter, normalized against the CPU only
implementation.

0.01

0.1

1

10

100

16 256 4K 64K 1M 16M

Vector Size

Sp
ee

du
p

ATI X1900XT Nvidia 7800GTX Nvidia 7800GTX SLI

Figure 1: Normalized FIR performance

	Introduction
	Commodity Graphics Processors
	Implementation & Methodology
	Benchmarks

