
Software Decomposition for
Multicore Architectures

Ankit Jain, Ravi Shankar
Florida Atlantic University

Multicore Architectures:
Software Reuse Challenge

• Reverse Engineer existing (legacy)
software to port it on next generation
Multicore Architectures

• Partition existing code over Multiple
concurrent cores

• Transform existing Sequential Model
based software to Concurrent Model
based software

Methodology
• Ten Steps uses

– Bottom-up Annotation
– Middle-Out Analysis
– Top-Down Representation

• Maximizes Software Reuse
• Performs Concurrency Modeling and

Performance Simulations
• Selects MA and decomposed software

architecture to meet QoS requirements

Results
• Analysis was performed on 2-Core and 4-Core

architecture solutions for 2 Algorithms

Performance:
4-Core showed over 65% (near 3x)

improvement over 2-Core implementation.
Algorithm 2 also showed significant
reduction in total execution cost as

compared to Algorithm 1.

Performance:
4-Core showed over 23% improvement

over 2-Core implementation

Properties:
1. Master Processor – Slave Management

2. Slave Processor(s) – Processed
Parallelized CCD, CCDPP, CNTRL,

REDEYE, CODEC
3. Slaves expands the instructions locally

based on code and data received.
Significant reduction in usage of the Bus

as compared to Algorithm 1.

Properties:
1. Master Processor – Processed CCD,

CCDPP, CNTRL & REDEYE + Slave
Management

2. Slave Processor(s) – Processed
Parallelized CODEC

3. Pre-Expanded Instructions are passed
to the Slave. Leads to heavy
communication over the Bus.

Algorithm 2Algorithm 1

