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Abstract 
 
Current multicore processors attempt to optimize 
consumer experience via task partitioning and concurrent 
execution of these (sub)tasks on the cores. Conversion of 
sequential code to parallel and concurrent code is neither 
easy, nor feasible with current methodologies. We have 
developed a mapping process that synergistically uses top-
down and bottom-up methodologies. This process is 
amenable to automation. We use bottom-up analysis to 
determine decomposability and estimate computation and 
communication metrics.    The outcome is a set of 
proposals for software decomposition. We then build 
abstract concurrent models that map these decomposed 
(abstract) software modules onto candidate multicore 
architectures; this resolves concurrency issues. We then 
perform a system level simulation to estimate concurrency 
gain and/or cost, and QOS (Qualify-of-Service) metrics.  
Different architectural combinations yield different QOS 
metrics;   the requisite system architecture may then be 
chosen.   We applied this ‘middle-out’ methodology to 
optimally map a digital camera application onto a 
processor with four cores.  
 
The computers and electronics industry will increasingly 
use multicore architectures (MA) in the near future. MA 
comprises of multiple cores on one physical chip. Cores 
also be known as System on Chip (SoC) or processors and 
are interconnected with each other using bus-based or 
packet-based interconnection network. Multiple medium 
or low-speed cores working together can achieve higher 
performance than a single high-speed core. MAs are 
expected to lower power dissipation and increase 
performance. MAs use GALS (Globally-asynchronous, 
locally-synchronous) design.  
 
MA requires software developers to know underlying 
hardware architecture to address concurrency issues. These 
are: 

o In design phase: Identify sections which could be 
parallelized; Reduce the use of locks while 
programming 

o In development phase: Data Corruption, 
Deadlocks, and Livelocks. 

 
Developers will require new tools and methodologies to 
synchronize among dynamic, concurrent, and real-time 
processes while writing multi-threaded code in a 
concurrent environment. Software designers will have to 
work with hardware designers to ensure proper software 
and hardware integration. 
 

Multi-threaded software executes without issues on a 
single core, but when it is introduced into a MA it can 
result in data corruption, deadlocks and livelocks during 
execution. As the number of cores increase on a chip, it 
will not be physically feasible to synchronize all the tasks. 
In order for software to exist in an asynchronous 
environment the software developer will have to come up 
with innovative ways to design software. This thesis 
illustrates an integrated methodology on how to restructure 
existing sequential code into concurrent code which 
executes efficiently on MA. 
 
The methodology is language independent. A ten step 
middle-out process was used that combined bottom-up 
annotation and decomposition, top-down modeling and 
middle-out analysis: 
 
Step 1: Source Level Computation (COMP) and 
Communication (COMM) Cost Estimation: A module’s 
COMM and COMP are calculated in terms of high-level 
attributes of RWXM (Read, Write, Execute and Multiply). 
COMP is calculated by determining the number of execute 
and multiply instructions and their cycle usage. COMM is 
calculated by determining number reads and writes 
instructions and their cycle usage 
 
Step 2: Complexity analysis: This is performed using 
coupling and cohesion metrics. Modules with high 
coupling and cohesion properties are identified. The type 
of coupling is determined in step 4. The aim is to produce 
tightly coupled cohesive modules in sub-systems that have 
low coupling between them. 
 
Step 3: Control and Data Flow Diagram (C/DFD) 
Analysis: Independent control flows can help determine 
concurrent tasks in the system. Data flow diagrams can 
help determine objects and data synchronization needs in 
the system. 
 
Step 4: Top-Down Graphical Decomposition Analysis: We 
analyze graphical decomposition of a software system by 
graphically combining results from steps 1 and 2 , and 
C/DFD from step 3. Software artifacts vulnerable to 
concurrency issues and types of coupling between modules 
are identified in this step.  
 
Step 5: Software Grouping: Modules with low COMP and 
high coupling are grouped grouped together. Control flow 
diagrams are utilized to determine multiple possible sub-
systems so that behavior is not altered.  
 
Step 6: Software Decomposition: Modules with high 
COMM and COMP are decomposed into smaller modules 
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to lower individual module cost. Data flow diagrams and 
concurrency issues are considered while performing this 
step.  
 
Step 5 and 6 yield many potential software architectures. 
While performing steps 5 and 6, we made sure that the 
functionality of the software is not compromised. We 
accomplish this by making incremental changes. A subset 
of optimum architectures is decided upon only after 
computing concurrency costs (CONC) at a later step. 
 
Step 7: System Level Concurrency Modeling: A 
concurrency model is developed using FSP language in the 
LTSA tool.  This helps in designing the concurrent system. 
Note that both software and hardware exploit concurrency, 
and high-level modeling help uncover and resolve any 
resulting concurrency issues. 
 
Step 8: Mid Level System Simulation: This is a discrete 
event based system simulation model which is developed 
using MLDesigner. 
 
Step 9: Concurrency Cost (CONC) Analysis: Software 
architecture is mapped onto hardware architecture using 
scheduler capabilities of the hardware model. The 
hardware architecture is fine tuned in order to produce 
optimum results. Memory access time, cache size, etc. can 
be optimized in order to create optimum conditions on the 
hardware. This generates concurrency costs of the 
concurrent system, for a given software architecture. 
 
Steps 7-9 are executed for each of the hardware 
architectures in combination with each of the software 
architectures obtained from an earlier step of software 
decomposition. 
 
Step 10: System Architecture Selection: A subset of 
system architectures which meet the QoS (Quality of 
Service) requirements are selected, as appropriate for our 
given application. 
 
In the methodology shown here, ways to decompose large 
sequential code to concurrent code by maximizing 
software reuse have been extensively researched. A ten-
step methodology which uses techniques such as bottom-
up annotation, middle-out analysis, and top-down 
representation was presented. The methodology provides a 
mechanism for software decomposition in concurrent 
system. Concurrency modeling tools FSP and LTSA were 
used to model and validate concurrent hardware and 
software models. COMM, COMP, and CONC were 
obtained related to every decomposition option. The 
CONC of all the decomposition options were compared 
and optimum solution was chosen after comparing CONC 
to QoS requirements. We can choose decomposition which 
is aimed at performance gain or lower energy 
consumption.  
 
We evolved a high level representation of DCS by use of 
bottom-up annotation on DCS source code.  DCS was used 

as a benchmark due its widespread application across 
multiple domains, which requires scalability. 
 
For software decomposition, we added a 10-step 
methodology to sequential DCS to concurrent code. Three 
different decomposition options were generated to map to 
the following multi-core architectures: 
 

o 4-core architecture 
o 9-core architecture 
o 27-core architecture 

 
 COMM, COMP, and CONC for the 4-core decomposition 
options were computed. Six variations of 4-core 
architecture were designed to find optimum bus interrupt 
timer in the architecture. 4-Core architecture 
decomposition was compared to a 2-core decomposition. 
CONC obtained by comparing the two showed that 4-core 
architecture decomposition was 23% faster than the other. 
The results obtained from 4-core decomposition were 
compared to our QoS requirements. Our QoS requirements 
were to lower energy consumption and gain performance. 
We chose the 4-core architecture with the bus interrupt 
timer period of 16 x CMM as the optimum decomposition.  
 
By using this methodology, we have shown that 
restructuring existing sequential software to concurrent 
execution was possible. CONC for 9-core and 27-core 
architecture were not computed, so 4-core architecture 
decomposition cannot be claimed as an overall optimum 
solution. We found ways to lower energy consumption and 
gain performance for execution of DCS.  
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