
Software Decomposition for Multicore Architectures
Ankit Jain, Ravi Shankar

ajain2@fau.edu, ravi@cse.fau.edu
Dept of Computer Science and Engineering

Florida Atlantic University, Boca Raton, FL-33431

Abstract

Current multicore processors attempt to optimize
consumer experience via task partitioning and concurrent
execution of these (sub)tasks on the cores. Conversion of
sequential code to parallel and concurrent code is neither
easy, nor feasible with current methodologies. We have
developed a mapping process that synergistically uses top-
down and bottom-up methodologies. This process is
amenable to automation. We use bottom-up analysis to
determine decomposability and estimate computation and
communication metrics. The outcome is a set of
proposals for software decomposition. We then build
abstract concurrent models that map these decomposed
(abstract) software modules onto candidate multicore
architectures; this resolves concurrency issues. We then
perform a system level simulation to estimate concurrency
gain and/or cost, and QOS (Qualify-of-Service) metrics.
Different architectural combinations yield different QOS
metrics; the requisite system architecture may then be
chosen. We applied this ‘middle-out’ methodology to
optimally map a digital camera application onto a
processor with four cores.

The computers and electronics industry will increasingly
use multicore architectures (MA) in the near future. MA
comprises of multiple cores on one physical chip. Cores
also be known as System on Chip (SoC) or processors and
are interconnected with each other using bus-based or
packet-based interconnection network. Multiple medium
or low-speed cores working together can achieve higher
performance than a single high-speed core. MAs are
expected to lower power dissipation and increase
performance. MAs use GALS (Globally-asynchronous,
locally-synchronous) design.

MA requires software developers to know underlying
hardware architecture to address concurrency issues. These
are:

o In design phase: Identify sections which could be
parallelized; Reduce the use of locks while
programming

o In development phase: Data Corruption,
Deadlocks, and Livelocks.

Developers will require new tools and methodologies to
synchronize among dynamic, concurrent, and real-time
processes while writing multi-threaded code in a
concurrent environment. Software designers will have to
work with hardware designers to ensure proper software
and hardware integration.

Multi-threaded software executes without issues on a
single core, but when it is introduced into a MA it can
result in data corruption, deadlocks and livelocks during
execution. As the number of cores increase on a chip, it
will not be physically feasible to synchronize all the tasks.
In order for software to exist in an asynchronous
environment the software developer will have to come up
with innovative ways to design software. This thesis
illustrates an integrated methodology on how to restructure
existing sequential code into concurrent code which
executes efficiently on MA.

The methodology is language independent. A ten step
middle-out process was used that combined bottom-up
annotation and decomposition, top-down modeling and
middle-out analysis:

Step 1: Source Level Computation (COMP) and
Communication (COMM) Cost Estimation: A module’s
COMM and COMP are calculated in terms of high-level
attributes of RWXM (Read, Write, Execute and Multiply).
COMP is calculated by determining the number of execute
and multiply instructions and their cycle usage. COMM is
calculated by determining number reads and writes
instructions and their cycle usage

Step 2: Complexity analysis: This is performed using
coupling and cohesion metrics. Modules with high
coupling and cohesion properties are identified. The type
of coupling is determined in step 4. The aim is to produce
tightly coupled cohesive modules in sub-systems that have
low coupling between them.

Step 3: Control and Data Flow Diagram (C/DFD)
Analysis: Independent control flows can help determine
concurrent tasks in the system. Data flow diagrams can
help determine objects and data synchronization needs in
the system.

Step 4: Top-Down Graphical Decomposition Analysis: We
analyze graphical decomposition of a software system by
graphically combining results from steps 1 and 2 , and
C/DFD from step 3. Software artifacts vulnerable to
concurrency issues and types of coupling between modules
are identified in this step.

Step 5: Software Grouping: Modules with low COMP and
high coupling are grouped grouped together. Control flow
diagrams are utilized to determine multiple possible sub-
systems so that behavior is not altered.

Step 6: Software Decomposition: Modules with high
COMM and COMP are decomposed into smaller modules

mailto:ajain2@fau.edu
mailto:ravi@cse.fau.edu

to lower individual module cost. Data flow diagrams and
concurrency issues are considered while performing this
step.

Step 5 and 6 yield many potential software architectures.
While performing steps 5 and 6, we made sure that the
functionality of the software is not compromised. We
accomplish this by making incremental changes. A subset
of optimum architectures is decided upon only after
computing concurrency costs (CONC) at a later step.

Step 7: System Level Concurrency Modeling: A
concurrency model is developed using FSP language in the
LTSA tool. This helps in designing the concurrent system.
Note that both software and hardware exploit concurrency,
and high-level modeling help uncover and resolve any
resulting concurrency issues.

Step 8: Mid Level System Simulation: This is a discrete
event based system simulation model which is developed
using MLDesigner.

Step 9: Concurrency Cost (CONC) Analysis: Software
architecture is mapped onto hardware architecture using
scheduler capabilities of the hardware model. The
hardware architecture is fine tuned in order to produce
optimum results. Memory access time, cache size, etc. can
be optimized in order to create optimum conditions on the
hardware. This generates concurrency costs of the
concurrent system, for a given software architecture.

Steps 7-9 are executed for each of the hardware
architectures in combination with each of the software
architectures obtained from an earlier step of software
decomposition.

Step 10: System Architecture Selection: A subset of
system architectures which meet the QoS (Quality of
Service) requirements are selected, as appropriate for our
given application.

In the methodology shown here, ways to decompose large
sequential code to concurrent code by maximizing
software reuse have been extensively researched. A ten-
step methodology which uses techniques such as bottom-
up annotation, middle-out analysis, and top-down
representation was presented. The methodology provides a
mechanism for software decomposition in concurrent
system. Concurrency modeling tools FSP and LTSA were
used to model and validate concurrent hardware and
software models. COMM, COMP, and CONC were
obtained related to every decomposition option. The
CONC of all the decomposition options were compared
and optimum solution was chosen after comparing CONC
to QoS requirements. We can choose decomposition which
is aimed at performance gain or lower energy
consumption.

We evolved a high level representation of DCS by use of
bottom-up annotation on DCS source code. DCS was used

as a benchmark due its widespread application across
multiple domains, which requires scalability.

For software decomposition, we added a 10-step
methodology to sequential DCS to concurrent code. Three
different decomposition options were generated to map to
the following multi-core architectures:

o 4-core architecture
o 9-core architecture
o 27-core architecture

 COMM, COMP, and CONC for the 4-core decomposition
options were computed. Six variations of 4-core
architecture were designed to find optimum bus interrupt
timer in the architecture. 4-Core architecture
decomposition was compared to a 2-core decomposition.
CONC obtained by comparing the two showed that 4-core
architecture decomposition was 23% faster than the other.
The results obtained from 4-core decomposition were
compared to our QoS requirements. Our QoS requirements
were to lower energy consumption and gain performance.
We chose the 4-core architecture with the bus interrupt
timer period of 16 x CMM as the optimum decomposition.

By using this methodology, we have shown that
restructuring existing sequential software to concurrent
execution was possible. CONC for 9-core and 27-core
architecture were not computed, so 4-core architecture
decomposition cannot be claimed as an overall optimum
solution. We found ways to lower energy consumption and
gain performance for execution of DCS.

Acknowledgements

This work was funded by iDEN, Motorola.

References

[1] Sutter, Herb, The Free Lunch Is Over: A Fundamental
Turn Toward Concurrency in Software, Dr. Dobb’s
Journal, 30(3) March. Internet.
http://www.gotw.ca/publications/concurrency-ddj.htm.
2005.

[2] Gomaa, Hassan, Structuring Criteria for Real Time
System Design, Proceedings of the 11th international
conference on Software engineering. 1989.

[3] Gomaa, Hassan, Use cases for Distributed Real-Time
Software Architectures, IEEE. 1997.

http://www.gotw.ca/publications/concurrency-ddj.htm

