
Algorithm Development for Future High Performance Systems
Jigsaw: An Early Case Study

Imran Khan
SoftServ Intl. Corp. 41 Eliot Hill Road, Natick MA 01760

Ph: (508) 655-0097, i.khan@softserv-intl.com

A High Performance System in the future will have a
combination of multi-core processors, RISC, DSP, FPGA
and ASIC nodes to run increasingly complex algorithm in
real time. The need to succed the first time will increase the
pressure to get the complete design cycle automated.
Most sophisticated algorithms use C, C++ or MATLAB.
While these languages have the capabilities of
implementing the computation with relative ease, the result
is usually not something that can be readily used in real
world systems. These languages lack the semantics and
constructs necessary to map the algorithm to the computing
architectures that are eventually required in the final
systems. To efficiently map an algorithm to the new
architectures the language should be able to handle
concurrency, fixed point data types of varying lengths,
model communication channels along with computation,
allow extensibility of data types, support design process at
all levels etc.. The only language that can handle all these
challenges is SystemC. SystemC has been chosen by IEEE
to be the design standard (IEEE 1666) for designing
increasingly sophisticated system on chips that require
concurrent modeling of system, hardware and software
architecture. Also relevant is the ability to encapsulate and

share IP without the need for full disclosure. SystemC
enforces a hierarchical and modular design with well
defined interfaces. Early modularization not only eases the
management of concurrent development throughout the
design cycle but also makes the configuration management
of the deployed system easier. SystemC provides support
for both un-timed and timed simulation models. The
algorithm designer can incrementally add sophistication to
both the transactional and computational model. In parallel
the designer can explore the performance characteristics of
mapping the algorithm to different combination of
hardware architectures by using the timed models.

Jigsaw Ladar
DARPA’s Jigsaw program required that the final airborne
system be accurately modeled so that concurrent algorithm
development could take place among the collaborating
groups. This provided an opportunity to take the new
development paradigm through all the design and
development phases of a real system that needed a variety
of compute nodes to achieve the performance goals. The
original C++ model was restructured using systemC.

Frame Formation Board

MPRCP

Data
Parser

point_cloud_gen

out_data

count_to_meters

data_valid

in_data

in_data_valid

in_range_in_meters

data_valid in_data_valid1

in_range_gate_delay

CLK

CLK

CLK
data_valid

focal_plane_gen

in_data_valid
data_valid

CLK

in_data_valid2

in_focal_plane

symRisley

aSymRisley

Ptr to
clouds_of_points

clock_gen

CLK

in_symRisley

in_aSymRisley

cl
ou

ds
_p

tr
_p

kt

in_data_valid1

CLK

in_ifov

tdp file
writer

Communications

in_data_valid

in_flash_pack

CLK

jp3 File
Reader

CLK

flash_pkt in_platform_position
in_target_positiontarget_location(lat,long,alt)

ground
detector crop

.tdp files

ifov_header_pkt

ifo
v_

he
ad

er
_p

kt
su

rv
iv

or
_p

oi
nt

_l
is

t

su
rv

iv
or

 p
oi

nt
 li

st

CLK

in_data_valid

CLK

next_flash

next_flash

ll_data_valid

ifov

.jp3 files

in_range_gate_count

tdp_header

tdp_headertdp_header

tdp_header

tdp_header

tdp_header

tdp_header

tdp_header

tdp_header

in_data_valid3

tdp_data_valid

tdp_data_valid

2D viewer

3
D

v
i
e
w
e
r

Figure 1 Block Diagram of Jigsaw systemC model

The color of the modules indicates the different physical
architecture for implementing them. Yellow modules run
on PowerPCs and the orange modules on FPGAs. Both
control and computation were modeled. This was an un-
timed model

Custom Data Types
Custom data types were added to handle both the 2D and
3D data that flows through. A custom control data type
“tdp_header” helped in modeling the control stream. When
the data size grew to a point where it started impacting
modeling performance, a custom pointer packet data type
was defined that contained a pointer to the allocated data to
the down stream modules.

Data Visualization
Data Visualization probes can be inserted both in modeling
and simulation. Visualization Tool Kit based visualization
window assisted in debugging both 2-D count data as well
as 3-D point cloud data.

Mixed Mode Simulation
The modules targeted for FPGA implementation were
coded in VHDL. The systemC based C model provided the
test input data as well as a reference output data. ModelSim
simulator provided the needed mixed mode simulation to
implement the test bench. Both pre and post synthesis
simulation over a prolonged data run validated the
implementation. This approach provided sophisticated unit
and system level test bench data generation that helped in
robust validation of the machinery.

Figure 2 SystemC based Test Bench for a VHDL module

Visual Validation
Simple vector based validation becomes too simplistic
when complex data streams are all interacting in real time
with each other to generate the output. The size and

duration of simulation is long, resulting in very large
data sets that can only be viewed using multi
dimensional visualization techniques. 3D rendered
images of tank in the clear are shown below that provide
visual comparison of ideal C model and synthesized
VHDL implementations of the same algorithm.

Figure 3 SystemC (top) and Synthesized VHDL

While some of the basic tools are available, there is
considerable room for EDA vendors to automate the
design and development process. Jigsaw experience has
shown that small effort in adapting the algorithm
development process can have huge dividends in time to
deployment.

References

[1] Imran Khan, “Learn to Manage All Kinds of
Complexity with SystemC”, Electronics Design, Sept.
2005

	Algorithm Development for Future High Performance Systems

