
1

Modeling Concurrency in Modeling Concurrency in
NOC for Embedded SystemsNOC for Embedded Systems

Ankur Agarwal, Ravi Shankar
Center of System Integration,

Dept of Computer Science and Engineering,

Florida Atlantic University, Boca Raton, FL 33431

ankur@cse.fau.edu, ravi@cse.fau.edu

High Performance Embedded Computing (HPEC)

Workshop

19-21 September 2006

2

CONCURRENCY MODELINGCONCURRENCY MODELING

• Concurrency Trend
– Multi-core Architectures

• Advantages of Concurrency Modeling
– Better Performance
– Lower Power Dissipation
– Higher Reuse

Deadlock/
Livelock

Concurrency
Issues

Multi-Core

3

CONCURRENCY FAILURESCONCURRENCY FAILURES

• Pitfalls of Concurrency
– Intermittent & Catastrophic failures
– Not a Traditional Coding Style
– Poor Specification – Large Integration Time

Example of Concurrency
Failures

–Denver Airport Baggage System
–Airplane Software Glitch

4

CONCURRENCY MODELING CONCURRENCY MODELING
WITH FSPWITH FSP

• Goals: Reduce Concurrency time,
concurrency failures & ease architectural
selection

• FSP: A Systematic approach to
concurrency modeling

• LTSA: Used for exhaustive analysis
• UML to Concurrency Modeling
• Powerful methodology for concurrency

modeling

5

CONCURRENCY MODELING CONCURRENCY MODELING
FLOW DIAGRAMFLOW DIAGRAM

High Level System
Specification

Identify Concurrent
Processes

Model Process
Interactions

Analyze System for
Deadlock/Livelock/

Starvation

Re-Do Component
Specification

6

NETWORK ON CHIP NETWORK ON CHIP
ARCHITECTURE (NOC)ARCHITECTURE (NOC)

• Multi-core
Architecture

• Reusable
Communication
Sub-System

• Enhances
Productivity

• Manages
Complexity

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

7

CONCURRENCY IN NOC CONCURRENCY IN NOC
ARCHITECTUREARCHITECTURE

• 3×3 NOC Mesh Architecture includes
– Forty Five Input Buffers
– Forty Five Output Buffers
– Nine Network Interfaces
– Nine Producers
– Nine Consumers
– Nine Schedulers
– Nine Routers

• Will there be concurrency issue among
these component interactions?

8

HIGH LEVEL SUBHIGH LEVEL SUB--SYSTEM SYSTEM
SPECIFICATIONSPECIFICATION

1. Data will be received in serialized packet
format

2. Several data paths will be available arranged
in a matrix fashion for data forwarding

3. Data packets may be buffered at each
intersection

4. Further routing will be available based on the
availability & congestion of links at the
destination

5. packet will contain destination address &
Priority

6. Links may be unidirectional (2 links for each
direction) or bi-directional

9

COMPONENT SPECIFICATIONCOMPONENT SPECIFICATION

1. Link Specification
1. Collects the data from the source
2. Forwards the data to the buffer

2. Buffer Specification
1. Store Input Data: Data sent by Link
2. Forward the data to the output: Data sent to

the node
3. Inform about the buffer status: buffer is

empty, buffer is full
4. Forward the high priority data first

10

3. Scheduler Specification
1. Receives the request from the buffer for

forwarding the data to the node
2. Forwards the request for transmitting data
3. Checks the availability of data path for a data

packet
4. Node Specification

1. Determines the route information
2. Gets the data from buffer
3. Forwards the data to a buffer

5. Producer/Consumer Specification
1. Forwards the data packet to the buffer based on

buffer availability
2. Accepts the data packet from the buffer

11

MODEL PROCESSMODEL PROCESS
INTERACTIONS ONLY (NOT INTERACTIONS ONLY (NOT

INTERNAL ACTIONS)INTERNAL ACTIONS)

Example:
PRODUCER = (buffAvail -> {hiPriDataOut,loPriDataOut} ->

PRODUCER).

Process Abstraction

12

DEVELOP MODEL DEVELOP MODEL
INCREMENTALLYINCREMENTALLY

1. 1st we analyzed Producer (P) and Buffer (B)
Process

2. Introduced Link (L) Process
3. Analyzed the interaction among P,B & L
4. Added Node (N) & scheduler (S) processes
5. Analyzed Interaction among P, B, L, N & S

processes
6. Later: Addition of consumer (C) process

13

MODEL ABSTRACTIONMODEL ABSTRACTION

P B L B N B L B N B

B L B N B

B L B N B

•• Abstracted ModelAbstracted Model

P B N B C

B N B

C

•• Initial ModelInitial Model

14

RESULTSRESULTS
Compiled: BUFFER
Compiled: SCHEDULER
Compiled: PRODUCER
Composition:
FINAL1 = b1:BUFFER || b2:BUFFER || s1:SCHEDULER || p1:PRODUCER
State Space:
24 * 24 * 9 * 2 = 2 ** 15
Composing...
-- States: 351 Transitions: 882 Memory used: 3043K
Composed in 110ms
FINAL1 minimising........
Minimised States: 351 in 46ms
No deadlocks/errors
Progress Check...
-- States: 351 Transitions: 882 Memory used: 3397K
No progress violations detected.
Progress Check in: 31ms

15

CONCLUSION
Concurrency Modeling will ensure that there
are no deadloack/livelocks in a system
Easier & quicker to integrate components into
a subsystem, and a subsystem into a system
Concurrency modeling at an early stage will
speed up system modeling and analysis
Enhanced Component Reuse via subsystem
Design Patterns

