
Modeling Concurrency in NOC for Embedded Systems
Ankur Agarwal, Ravi Shankar

ankur@cse.fau.edu, ravi@cse.fau.edu
Dept of Computer Science and Engineering, Florida Atlantic University

Boca Raton, FL 33431

Abstract
Real Time embedded system designers are facing
challenges in the selection and optimization of the system
architecture. A typical system comprises of programmable,
concurrent, heterogeneous multiprocessors; these are called
multiprocessor system-on-chip (MPSoC). The consequence
of this MPSoC trend is a shift in concern from computation
and sequential algorithms to concurrency, synchronization
and communication in every aspect of hardware and
software co-design and development. The main problems
in the deep sub-micron technologies arise from non scalable
wire delays, errors in signal integrity and non-synchronized
communication. These problems may be addressed by the
use of packet switched Network on Chip (NOC)
architecture for MPSoCs used in real-time systems. Such a
NOC based system will have to support concurrent
processing, in software and hardware. Concurrency issues,
if not addressed, may lead the system into a deadlock or a
livelock state. System design integration and verification
approaches will not be cost-effective in exposing
concurrency failures as they are intermittent; this can be
costly (significantly increased time to market and field
failures). One would have to develop abstract concurrency
models and do exhaustive analysis on these models to test
for concurrency problems. In this paper we present a
systematic approach that models concurrency by using
Finite State Process (FSP); this model is exhaustively tested
with Labeled Transition State Analyzer (LTSA). We
propose a set of rules that should be followed for modeling
a concurrent system. We further analyze the proposed
approach by modeling concurrency in the NOC backbone.

1. NOC Platform for Embedded Systems
As the technology scaling works better for transistors than
for interconnecting wires, there is an increasing disparity
between wires and the transistors in terms of power
consumption and latency. Thus bus based communication
has become a bottleneck. Moreover, in a bus based system,
as the number of the processors on the bus is increased, the
system performance decreases rapidly. Many innovations,
such as, pipelining, split-and-retry techniques, removal of
tri-state buffers and multi-phase clocks, have been
introduced in bus architectures to counteract this. However,
in many cases introduction of new bus architectures has
required many changes in bus implementation, and more
importantly bus interfaces, thus impacting IP reusability.
Another reason that the buses are not scalable is that they
cannot decouple the activities of the transaction, transport
and physical layers. On a billion transistor chip, it would
not be possible to send a global signal across the chip
within real-time bounds. Moreover, a bus based SoC or
MPSoC does not offer the required amount of reuse in order

to meet the time-to-market requirements. This has resulted
in declining productivity of system architects and designers.
NOC can improve design productivity by supporting
modularity and reuse of complex cores, thus enabling a
higher level of abstraction in the architectural modeling of
future systems.

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
S

B
B

B B

B
B

B B
P/C

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

N
I

Figure 1. NOC Architecture

Figure 1 shows a 3×3 mesh based NOC architecture. B, P,
C, N and S represent buffer, producer, consumer, node and
scheduler respectively. Links provide connection to various
buffers, node/scheduler, and buffer. The routers are
connected to each other and to NI (network interface).

2. Concurrency Modeling on NOC Platform

Use of the NOC architecture implies a shift in concern from
computation and sequential algorithms to modeling
concurrency, synchronization and communication. In a
multiprocessing environment there are various processes
executing simultaneously. In NOC, at a given time, every
resource may either be producing or consuming some data
packets. Thus almost every element (node, link, buffer,
router, scheduler, resource etc.) might be communicating
with another element, perhaps concurrently, on the NOC
platform. Therefore, there are several inter-processes
communications in such a model. If these inter-process
communications are not modeled properly then the system
may fail. Such a failure may not be detected at the system
integration phase. These failures are intermittent, which
occur only under certain condition, but nevertheless may be
catastrophic. A system may be more prone to intermittent
failures if concurrency concerns are not addressed properly.
These intermittent failures may result in a deadlock or a
livelock state. Thus it is very important to model
concurrency issues in such NOC systems.

In this paper we propose to model concurrent processes in a
NOC. For this we use finite state process (FSP) language
and labeled transition system analyzer (LTSA) tool
developed by Jeff Magee and Jeff Kramer [2]. We first
write a high level specification. This should not be platform

or data dependent. We then identify the concurrent
processes in our model. As the concurrency issues arise
only due to intra-process interactions, not due to
(sequential) internal data processing, we model only the
(external) interaction among various processes. This
reduces the model complexity significantly; models execute
faster due to reduced state exploration.

3. Concurrency Model for NOC
In this section we present our NOC concurrency model for
the communication backbone layer.

3.1. Evolve High Level Specifications: These high level
specifications should not contain any details. Our
abbreviated specifications follow: Data will be received in
serialized packet format; there will be several paths
available arranged in a matrix fashion for the data packet to
travel; data may be buffered at each intersection; further
routing is available based on the availability & congestion
of links at the destination; packet will contain destination
address & Priority; and links may be unidirectional (2 links
for each direction) or bi-directional. Further, we simplified
our concurrency model by these assumptions: Links are
unidirectional and Nodes are arranged in a 2-D mesh.

3.2. Identify Concurrency Processes: We identified
concurrent processes from the above specifications. These
concurrent processes identified were links, buffers,
schedulers, nodes, producers and consumers. We then
defined detailed specification for each of these processes:
(1) Link Specification: Link collects the data from the
source; and link forwards the data to the buffer. (2) Buffer
Specification: Store Input Data sent by Link; forward the
data to the output: to a node; inform about the buffer status:
buffer is empty / full; and Forward the high priority data
first. (3) Scheduler Specification: Receive request from the
buffer for forwarding the data to the node; forward the
request for transmitting the higher priority data first; and
check the availability of data path for the data packet. (4)
Node Specification: Determine the route information; get
the data from buffer; and forwards the data to a buffer (5)
Producer/Consumer Specification: For Producer- forward
the data packet to the buffer; data packet will be forwarded
based on the availability of the buffer; and For consumer -
accept the data packet from the buffer

3.3. Develop Model Incrementally and Hide Internal
Details: While modeling our concurrent NOC model we
followed an incremental approach. We first developed the
producer and link processes. We then checked for
concurrency issues in these two processes before including
other processes in the model. Since the link process is
attached to the buffer process, we then added a buffer
process to the model. If the buffer is available then
producer outputs either a hi-priority data (hiPriDataOut) or
a mid-priority data (midPriDataOut). The model does not
reveal any details about the source or contents of the data.
We have run the simulation with three priority levels and
verified the absence of any concurrent violations.
3.4. Suppress Unnecessary Details from the
Specification: In order to limit the number of states, it is

important to hide unnecessary details from the model. In
modeling the NOC, our goal was to model the system
shown in Figure 1. A NOC model with 9 nodes and
schedulers along with 36 buffers, 9 producers and
consumers and more than 100 links would have led to tens
of thousands of states. Thus it was not only difficult but
almost impossible to simulate such a model with FSP and
analyze with LTSA. Therefore, we abstracted this model to
represent only one representative scenario of the
interaction. If this interaction does not have any
concurrency issues then other interactions may be
replicated in a similar manner to avoid deadlocks and
livelocks.

P B L B
B

N B L B N B C

B L B N B

B L B N B

P B L B
B

N B L B N B C

B L B N B

B L B N B
Figure 2. Abstract Model for NOC with a Single

Producer/Consumer Interaction
Further, from the implementation of the link process we
realized that a link is responsible for just forwarding the
data to the next process. In this it does not play any role
which may cause any concurrency concerns. Thus we
eliminated the link process from the model. We further
reduced this model into a more simplified model by
removing unnecessary data paths. Instead of showing three
data paths (3 buffers connected to a Node) we represented
the model with two data paths (2 buffers with 1 Node). This
is due to fact that synchronization issues will arise when
one or more processes try to interact with a third process.
But as long as the number of similar processes is more than
one, we can have a general model to represent these
interactions. It may be concluded that the number of buffers
(as long as it is more one) will not make a difference in
addressing concurrency issues. However, it should be noted
that a node with one buffer will not have the same
implementation as a node with two buffers. Final abstract
model used for modeling concurrency is shown in Figure 3.

P B N B
B

C

B N B

P B N B
B

C

B N B
Figure 3. Abstract Model for NOC with Single Data path

Conclusion
We have proposed a methodology for exposing and
evaluating concurrency issues at an abstract level for the
NOC architecture. This may be adopted for use in other
multiprocessor/multi-core architectures. It is our experience
that this abstract modeling will reduce unnecessary
interactions during the system integration phase, enhancing
productivity significantly.

References
[1] Jantsch, A., and Tenhunen, H., Editors, Networks on Chip,
Springer, 2003
[2] Magee, J., and Kramer, J., Concurrency Modeling, Wiley,
1999.

