
Modeling Concurrency in NOC for Embedded Systems 
Ankur Agarwal, Ravi Shankar 

ankur@cse.fau.edu, ravi@cse.fau.edu 
Dept of Computer Science and Engineering, Florida Atlantic University 

Boca Raton, FL 33431 
 
Abstract 
Real Time embedded system designers are facing 
challenges in the selection and optimization of the system 
architecture. A typical system comprises of programmable, 
concurrent, heterogeneous multiprocessors; these are called 
multiprocessor system-on-chip (MPSoC). The consequence 
of this MPSoC trend is a shift in concern from computation 
and sequential algorithms to concurrency, synchronization 
and communication in every aspect of hardware and 
software co-design and development.   The main problems 
in the deep sub-micron technologies arise from non scalable 
wire delays, errors in signal integrity and non-synchronized 
communication. These problems may be addressed by the 
use of packet switched Network on Chip (NOC) 
architecture for   MPSoCs used in real-time systems. Such a 
NOC based system will have to support concurrent 
processing, in software and hardware.   Concurrency issues, 
if not addressed, may lead the system into a deadlock or a 
livelock state. System design integration and verification 
approaches will not be cost-effective in exposing 
concurrency failures as they are intermittent; this can be 
costly (significantly increased time to market and field 
failures). One would have to develop abstract concurrency 
models and do exhaustive analysis on these models to test 
for concurrency problems. In this paper we present a 
systematic approach that models concurrency by using 
Finite State Process (FSP); this model is exhaustively tested 
with Labeled Transition State Analyzer (LTSA). We 
propose a set of rules that should be followed for modeling 
a concurrent system. We further analyze the proposed 
approach by modeling concurrency in the NOC backbone. 

 
1. NOC Platform for Embedded Systems 
As the technology scaling works better for transistors than 
for interconnecting wires, there is an increasing disparity 
between wires and the transistors in terms of power 
consumption and latency. Thus bus based communication 
has become a bottleneck. Moreover, in a bus based system, 
as the number of the processors on the bus is increased, the 
system performance decreases rapidly. Many innovations, 
such as, pipelining, split-and-retry techniques, removal of 
tri-state buffers and multi-phase clocks, have been 
introduced in bus architectures to counteract this. However, 
in many cases introduction of new bus architectures has 
required many changes in bus implementation, and more 
importantly bus interfaces, thus impacting IP reusability. 
Another reason that the buses are not scalable is that they 
cannot decouple the activities of the transaction, transport 
and physical layers. On a billion transistor chip, it would 
not be possible to send a global signal across the chip 
within real-time bounds. Moreover, a bus based SoC or 
MPSoC does not offer the required amount of reuse in order 

to meet the time-to-market requirements. This has resulted 
in declining productivity of system architects and designers. 
NOC can improve design productivity by supporting 
modularity and reuse of complex cores, thus enabling a 
higher level of abstraction in the architectural modeling of 
future systems. 
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Figure 1. NOC Architecture 

Figure 1 shows a 3×3 mesh based NOC architecture.   B, P, 
C, N and S represent buffer, producer, consumer, node and 
scheduler respectively. Links provide connection to various 
buffers, node/scheduler, and buffer. The routers are 
connected to each other and to NI (network interface).    
 
2. Concurrency Modeling on NOC Platform  

Use of the NOC architecture implies a shift in concern from 
computation and sequential algorithms to modeling 
concurrency, synchronization and communication.  In a 
multiprocessing environment there are various processes 
executing simultaneously. In NOC, at a given time, every 
resource may either be producing or consuming some data 
packets. Thus   almost every element (node, link, buffer, 
router, scheduler, resource etc.) might be communicating 
with another element, perhaps concurrently, on the NOC 
platform. Therefore, there are several inter-processes 
communications in such a model. If these inter-process 
communications are not modeled properly then the system 
may fail. Such a failure may not be detected at the system 
integration phase. These failures are intermittent, which 
occur only under certain condition, but nevertheless may be 
catastrophic. A system may be more prone to intermittent 
failures if concurrency concerns are not addressed properly. 
These intermittent failures may result in a deadlock or a 
livelock state.  Thus it is very important to model 
concurrency issues in such NOC systems. 

In this paper we propose to model concurrent processes in a 
NOC.  For this we use finite state process (FSP) language 
and labeled transition system analyzer (LTSA) tool 
developed by Jeff Magee and Jeff Kramer [2]. We first 
write a high level specification. This should not be platform 



or data dependent. We then identify the concurrent 
processes in our model. As the concurrency issues arise 
only due to intra-process interactions, not due to  
(sequential) internal data processing, we model only the 
(external) interaction among various processes. This 
reduces the model complexity significantly; models execute 
faster due to reduced state exploration.   
  
3. Concurrency Model for NOC 
In this section we present our NOC concurrency model for 
the communication backbone layer.  

3.1. Evolve High Level Specifications: These high level 
specifications should not contain any details. Our 
abbreviated specifications follow: Data will be received in 
serialized packet format; there will be several paths 
available arranged in a matrix fashion for the data packet to 
travel; data may be buffered at each intersection; further 
routing is available based on the availability & congestion 
of links at the destination; packet will contain destination 
address & Priority; and links may be unidirectional (2 links 
for each direction) or bi-directional. Further, we simplified 
our concurrency model by these assumptions: Links are 
unidirectional and Nodes are arranged in a 2-D mesh.  
 
3.2. Identify Concurrency Processes: We identified 
concurrent processes from the above specifications. These 
concurrent processes identified were links, buffers, 
schedulers, nodes, producers and consumers. We then 
defined detailed specification for each of these processes: 
(1) Link Specification: Link collects the data from the 
source; and link forwards the data to the buffer. (2) Buffer 
Specification: Store Input Data sent by Link; forward the 
data to the output: to a node; inform about the buffer status: 
buffer is empty / full; and Forward the high priority data 
first. (3) Scheduler Specification: Receive request from the 
buffer for forwarding the data to the node; forward the 
request for transmitting the higher priority data first; and 
check the availability of data path for the data packet. (4) 
Node Specification: Determine the route information; get 
the data from buffer; and forwards the data to a buffer (5) 
Producer/Consumer Specification: For Producer- forward 
the data packet to the buffer; data packet will be forwarded 
based on the availability of the buffer; and For consumer -
accept the data packet from the buffer 
 
3.3. Develop Model Incrementally and Hide Internal 
Details: While modeling our concurrent NOC model we 
followed an incremental approach. We first developed the 
producer and link processes.  We then checked for 
concurrency issues in these two processes before including 
other processes in the model. Since the link process is 
attached to the buffer process, we then added a buffer 
process to the model. If the buffer is available then 
producer outputs either a hi-priority data (hiPriDataOut) or 
a mid-priority data (midPriDataOut). The model does not 
reveal any details about the source or contents of the data. 
We have run the simulation with three priority levels and 
verified the absence of   any concurrent violations. 
3.4. Suppress Unnecessary Details from the 
Specification: In order to limit the number of states, it is 

important to hide unnecessary details from the model. In 
modeling the NOC, our goal was to model the system 
shown in Figure 1. A NOC model with 9 nodes and 
schedulers along with 36 buffers, 9 producers and 
consumers and more than 100 links would have led to tens 
of thousands of states. Thus it was not only difficult but 
almost impossible to simulate such a model with FSP and 
analyze with LTSA. Therefore, we abstracted this model to 
represent only one representative scenario of the 
interaction. If this interaction does not have any 
concurrency issues then other interactions may be 
replicated in a similar manner to avoid deadlocks and 
livelocks.  
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Figure 2. Abstract Model for NOC with a Single 

Producer/Consumer Interaction 
Further, from the implementation of the link process we 
realized that a link is responsible for just forwarding the 
data to the next process. In this it does not play any role 
which may cause any concurrency concerns. Thus we 
eliminated the link process from the model. We further 
reduced this model into a more simplified model by 
removing unnecessary data paths. Instead of showing three 
data paths (3 buffers connected to a Node) we represented 
the model with two data paths (2 buffers with 1 Node). This 
is due to fact that synchronization issues will arise when 
one or more processes try to interact with a third process. 
But as long as the number of similar processes is more than 
one, we can have a general model to represent these 
interactions. It may be concluded that the number of buffers 
(as long as it is more one) will not make a difference in 
addressing concurrency issues. However, it should be noted 
that a node with one buffer will not have the same 
implementation as a node with two buffers. Final abstract 
model used for modeling concurrency is shown in Figure 3. 
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Figure 3. Abstract Model for NOC with Single Data path 

Conclusion 
We have proposed a methodology for exposing and 
evaluating concurrency issues at an abstract level for the 
NOC architecture. This may be adopted for use in other 
multiprocessor/multi-core architectures. It is our experience 
that this abstract modeling will reduce unnecessary 
interactions during the system integration phase, enhancing 
productivity significantly.  
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