X-Sim: A Federated Heterogeneous Simulation Environment

Saurabh Gayen, Eric J. Tyson, Mark A. Franklin, Roger D. Chamberlain, Patrick Crowley
Department of Computer Science and Engineering
Washington University in St. Louis
sg3@wustl.edu, etyson@wustl.edu, jbf@wustl.edu, roger@wustl.edu, pcrowley@wustl.edu

Introduction

Heterogeneous systems consisting of a multitude of
different platforms are often the target for high-
performance applications, either due to a desire to leverage
the unique strengths of each platform, or simply to use the
devices that are readily available. Developing applications
to run on such a diverse set of devices, however, is a
daunting task.

Coordinating multiple languages, especially very different
ones like hardware and software languages, is awkward and
error-prone. Additionally, implementing communication
mechanisms between different devices unnecessarily
increases development time. Simulating such a system is
complicated because of the need to coordinate compilers
and simulators, often with very different interfaces, options,
and fidelities.

Auto-pipe [1] is a toolset developed to address these
difficulties. Auto-Pipe applications are expressed using a
data flow coordination language. The applications may
then be compiled and mapped onto complex sets of devices,
simulated, and optimized.

X-Sim is a simulation environment that is part of the larger
Auto-Pipe system. It is used to establish functional
correctness and gather performance statistics. Key features
of X-Sim are:

e Integration of multiple, potentially very different
simulators, into a single federated simulation.

e Automation of the system simulation by coordinating
individual simulator runs.

e Integration into the Auto-Pipe design flow.

The Auto-Pipe System

Auto-Pipe is a performance-oriented development
environment for heterogeneous systems. It concentrates on
streaming applications placed on pipelined architectures. In
this system, applications are expressed in the X Language
[2] as dataflow graphs. In these graphs, individual
computational tasks called blocks are connected with
interconnections called edges indicating the type and flow
of data between blocks. The actual implementations of the
blocks are written in various languages for any subset of the
available platforms (e.g., C/C++ for general-purpose
processors, HDL for FPGAs, assembly language for
network processors and DSPs).

This work is supported by NSF grant CCF-0427794.

Applications may be mapped onto arbitrary sets of mixed
physical resources. Such resources may be a combination
of general-purpose processors (e.g., x86, PowerPC, ARM),
chip multiprocessors (e.g., Intel IXP network processor,
multi-core x86 processors, IBM Cell processor), and
reconfigurable hardware devices (e.g., FPGAS).

The Auto-Pipe environment consists of a set of tools for
compiling, simulating, and optimizing applications in
complex heterogeneous systems. These tools include X-
Com, an X Language compiler; X-Sim, a simulation
environment; and X-Opt, an optimization tool. Auto-Pipe
aims to provide an extensible infrastructure for supporting
new types of computation and interconnection devices,
simulators, and optimization techniques.

Within the Auto-Pipe system, X-Sim provides functional
simulation to determine application correctness, and
performance simulation to profile individual components of
the application. The results of performance simulation may
then be used to improve the performance either manually or
automatically using the X-Opt tool.

Figure 1 depicts an Auto-Pipe design flow which
automatically optimizes mapping of an application’s blocks
and edges onto physical computation resources (e.g.,
processors, FPGASs) and interconnect resources (e.g., PCI
bus, Ethernet switch). The mapped application is first
compiled using X-Com. Then, X-Sim simulates the
compiled components and generates performance statistics.
After checking for functional correctness, X-Opt uses the
statistics to incrementally revise the mapping.

X-Opt

Application

Figure 1: Design flow under Auto-Pipe

Automatically revise mapping

The X-Sim Environment

X-Sim provides an environment in which multiple
simulators are seamlessly combined to simulate X
Language applications mapped to heterogeneous devices.
The X-Sim infrastructure is open-ended to allow support for
a range of simulators, from low-level discrete-event and
cycle-accurate simulators to rough estimates from analytic
models. X-Sim supports the SimpleScalar [3] processor
simulator, the ModelSim [4] hardware logic simulator, and
native execution in POSIX environments.

X-Sim generates Makefile scripts to automatically compile
and simulate applications. The scripts use data
dependencies derived from the application description to
simulate individual components in order. In acyclic
pipelined systems, this allows one to run simulations
concurrently on multiple machines.

Interconnects between computation devices are simulated
by X-Sim using an extensible library of communication
models. If a more complex communication simulator is
available, that may be used instead.

Figure 2 shows how an application with four blocks (A, B,
C, D) distributed across two devices looks when simulated
with X-Sim. Directed arrows depict the flow of data, with
inter-device communication using data files, and in-device
edges using the native communication methods (wires in
FPGA, function calls on a processor). To profile
application performance, X-Sim keeps track of when data
enters and exits individual simulators by maintaining
multiple timestamp files (T1, T2, T3) for every
interconnect. Interconnect models are used on all inter-
device communications to simulate data transmission.

N\

N\

T1

T1 T2

| (|
| |
I ' I
A ‘E‘D"Oﬁi_a]}ﬁ" B IT1
| | |
) L)

Interconnect
Model

Device 1,/

Device 2 y.

Figure 2: Flow of data within an Auto-Pipe simulation

There are three types of timestamps. The first timestamp
(T1 in Figure 2) keeps track of when data is output from a
computational device onto an interconnect. The second
timestamp (T2) indicates when the data has been
transmitted across the interconnect and is available to the
receiving device. The third timestamp (T3) records the
time at which the receiving device consumed the data and
started processing it. By maintaining these timestamps, X-
Sim provides a time trace of all data transfers that occurred
between computational devices.

Multiple blocks may be mapped to the same computational
resource. Timestamps are only kept for the data entering
and exiting blocks which connect to interconnects.

When they are executed, each simulator generates entry and
exit timestamps in their native format. Header information
indicates in what format the timestamps are stored. After
all the timestamps are collected, this format information is
used to normalize them into a universal time domain. The
timestamps may then be used to generate characteristic
distributions of processing times for each device.

An analysis component obtains basic and advanced
performance measurements using the timestamps. Basic
measurements include the mean and variance of service
time distributions associated with devices. These
measurements may be easily aggregated to determine
throughput and latency figures for the individual devices
and the system as a whole.

T3 /C—“D-'O—’
P O

More advanced measurements may take the time
distribution data and fit it to common analytic distributions
(e.g., exponential, gamma, Gaussian) for the development
of queuing models. The raw data may also be used in trace-
driven simulations.

A user may take these simple and complex performance
analyses and solve for various performance parameters
using analytic methods. Using this capability, alternative
mappings may be explored to improve performance, either
manually by user inspection, or automatically by using the
X-Opt tool.

Currently, X-Sim requires that the devices in a simulation
be organized in an acyclic pipeline. This is because all
intermediate data and timestamp files must be completed
before they may be used by the next stage.

An advantage of the X-Sim approach is that the simulator
data dependencies are well understood a priori. This allows
independent simulations to run in parallel. By exposing the
data dependencies in the simulation Makefile and using the
file system for communication, X-Sim is able to easily
distribute simulations of large systems across many real
computing resources to speed up simulation.

Conclusions

We have introduced X-Sim, a simulation environment for
the Auto-Pipe toolset, and described how it functions. X-
Sim supports the infrastructure of Auto-Pipe to simulate X
applications distributed onto complex heterogeneous
architectures. X-Sim is integral to the Auto-Pipe design
loop involving automatic improvement of pipeline
performance.

Future work may investigate permitting cyclic topologies
when all simulators in the system permit the pausing of
simulation time, which will allow the entire distributed
system to run incrementally.

X-Sim currently supports the ModelSim and SimpleScalar
simulators for detailed hardware and software simulation.
It also supports native execution for performance estimates
of off-the-shelf computer systems. Furthermore, X-Sim is
easily extended to support more simulator and emulator
environments and performance models as more device
types and development platforms are integrated into the
Auto-Pipe toolset.

References

[1] Mark A. Franklin, Eric J. Tyson, James Buckley, Patrick
Crowley, and John Maschmeyer. “Auto-Pipe and the X
Language: A Pipeline Design Tool and Description
Language.” In Proc. of Int’l Parallel and Distributed
Processing Symp., April 2006.

[2] Eric Tyson. X Language specification v1.0. Technical report
WUCSE-2005-47, Washington University Dept. of Computer
Science and Engineering, 2005.

[3] Todd Austin, Eric Larson, and Dan Ernst. “SimpleScalar: An
Infrastructure for Computer System Modeling.” Computer,
vol. 35, no. 2, pp. 59-67, Feb. 2002.

[4] Mentor Graphics Corp. ModelSim. http://www.model.com

