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Programming a real time system based on multiple Digital 
Signal Processors (DSPs) is a difficult task.  Few 
programmers can fully harness the power of a DSP because 
it requires specialized knowledge of the processor’s 
architecture and assembly language.  To compensate for 
this lack of specialized knowledge, vendors and third 
parties provide optimized vector libraries which implement 
a select group of algorithms as well as compilers that 
optimize specific code constructs.  Programs rely on this 
middleware to be broad and flexible enough to allow their 
applications to meet real time requirements.  Processing 
data in real time often requires high amounts of parallelism.  
Programming large projects across multiple processors 
requires much foresight in effectively partitioning the work 
and ensuring deadlock and other runtime issues are avoided 
once all the parts of the application are brought together. 
 
Since the early 1990s, boards of multiple DSP chips have 
been one of the leading target architectures in real time 
systems.  A series of architectures and instruction sets have 
followed, from SHARCs to Power-PCs to AltiVec Power-
PCs to TigerSHARCs.  Each successive generation of 
hardware provided a small increase in clock speed and 
more processors on a single board, along with an 
adjustment to the architecture or instruction set that usually 
made legacy code nonportable.  While these platforms 
provided a stable framework to address the issues of 
software development, few have addressed these two issues 
– how to affectively program a wide range of algorithms for 
a processor without intimately knowing its architecture and 
assembly code and how to program multiple processors in a 
manner that is not fraught with risk.   Without addressing 
these two issues, programs become tied to a certain 
distribution of processing across a certain number of 
processors, with little hope of being able to improve that 
distribution or better use the processor’s power if problems 
arise during development. 

 

 
Increasingly, field programmable gate arrays (FPGAs) are 
being used alongside DSPs as a method for meeting high 
data flow requirements through massive parallelism, and 
multicore processors (such as the Cell processor) are being 
used in place of DSPs because they provide parallelism on a 
single chip.  The increased use of these two types of 
processors does not present new problems.  Rather, it 
heightens these longstanding problems that developers have 
long tried to ignore.  Processors like the SHARC offered 
high efficiency years ago, but the difficulty of programming 
that architecture in assembly did not allow for that 
efficiency to be fully utilized.  Because the problem was 
addressed largely through middleware, programmers could 
only address optimizing their applications through a limited 
toolbox instead of attacking their problems with their 
intelligence and creativity.  The Cell processor offers a 

vector board of chips which are a vector of processors that 
use vector ALUs.  This hierarchy of parallelism can be 
cloaked with middleware, but doing so increases the 
chances it too will be replaced by a new architecture before 
its full power is harnessed. 
 
While many have ignored the root issues of implementing 
parallel digital systems, several tools have been developed 
to address these issues.  Gedae is an integrated design 
environment for software development on boards of DSPs 
or distributed networks (e.g., Linux clusters).   Gedae 
greatly simplifies the task of software development on these 
systems by automatically implementing the distributed 
control needed to run an application on a multiprocessor 
system (such as the mode control construct shown in Figure 
1).  Gedae is able to provide efficient code through a three-
pronged approach: 1) utilize optimized vector libraries for 
common algorithms like addition and FFTs, 2) create 
compiler-like optimizations through knowledge of the 
target architecture, and 3) intelligently preplan the 
execution of the application so that order of execution, 
memory management, communication patterns, and other 
issues are determined as much as possible before runtime.  
Through the use of tools like Gedae, we can both slow 
down hardware obsolescence by making current hardware 
more programmable, thus increasing utilization, as well as 
more rapidly transition to emerging technologies by 
handling that transition through the tool. 

 
Automated Handling of Parallelism 

Figure 1 – Distributed control – such as mode 
switching – is generated automatically. 

Multicore processors, such as the Cell processor, present 
several challenges to programmers who wish to fully 
exploit the special purpose cores.  The Cell is a system on a 
chip design (SoC) which houses 9 processing cores.  One of 
the 9 cores is a central processing unit, or “Power 
Processing Element” (PPE).  The other 8 cores – called 
“Synergistic Processing Elements” (SPE) – are designed for 
very compute-intensive, special purpose tasks.  To 
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effectively program the chip, the programmer must tackle 
the hard problems of distributing work to many processors 
in order to take advantage of the architecture.  Distributed 
control is often one of the most difficult tasks of software 
development, and distributing that control to lightweight 
cores requires that the control processing also be 
lightweight and highly customized to the task at hand.   
 
The programming of an SPE also requires specialized 
knowledge, either in using the assembly language for the 
SPE or the data types and functional interface of its C/C++ 
extensions.  A developer must have intimate knowledge of 
the vector ALU and its pipeline characteristics to 
effectively use the SPE.  Once an SPE is hand coded using 
these language extensions, the code is tied to the Cell 
architecture and has very limited portability.  An alternate 
multicore architecture, e.g., one with 3 PPEs instead of 1 
PPE and 8 SPEs, could not be coded with the same 
language.  A developer given the task to port an application 
for the Cell to this alternate architecture would likely have 
to start from scratch. 
 
Autocoding using Gedae addresses these problems directly.  
Using the same technology it developed for addressing 
boards of DSP processors, Gedae can automatically 
implement the distributed control for heterogeneous 
multicore processors like the Cell architecture.  The 
distributed control includes a predefined component, the 
Runtime Kernel (RTK), which is lightweight enough to run 
on processors such as SHARCs and Cell SPEs, and code-
generated components for processors and FPGAs with 
insufficient resources to run the RTK.  Because the 
generated implementation is built to run on a Virtual 
Machine, as shown in Figure 2, functionality specified in 
Gedae is not tied to a single architecture.  Applications 
developed for DSP boards in Gedae can be quickly 
transitioned to the Cell and future multicore architectures 
when the RTK is placed on each core.   
Automated Architecture-Based Optimization 
Gedae-SFG (Signal Flow Graph) is a single sample 
extension to the Gedae programming language that enables 
compiler-like optimizations.  While core Gedae primitives 

 

 
Figure 2 – Core Gedae implementation process 

 
Figure 3 – Low pass filter implemented in Gedae-SFG  

are written in Ansi-C (with Gedae-specific extensions, 
providing efficiency through links to optimized vector 
libraries), Gedae-SFG can be used to export code in any 
programming language, whether it’s the same generic Ansi-
C, VHDL for generating firmware, or assembler specific to 
a fixed processor.  The language allows the algorithm to be 
viewed at fine detail by both the developer and the tool.  
This visibility enables the tool to automate many of the 
planning issues associated with using the processor 
efficiently, e.g., moving data through registers and local 
memory and fully utilizing a vector ALU. 
 
Much like Gedae’s core language, the Gedae-SFG graph 
(such as the low pass filter shown in Figure 3) specifies 
only the functionality of the graph without regard to the 
target or its programming language.  Through the Language
Support Package (LSP), target code is exported to 
implement the application, and generic Ansi-C code is 
created for simulation.    
 
While this technology was developed to support FPGAs, 
the technology is also powerful for autocoding assembly-
level code for fixed architectures, from older architectures 
like the SHARC processor to emerging technologies like an 
SPE on the Cell processor.   To allow for these target-based 
optimizations, Gedae is provided with information about 
the target architecture on the processor level, including the 
operations and byte widths for each ALU path, the size of 
the register file, the size of the local storage, and how all the 
components are connected.  By entering this information 
into Gedae’s embedded configuration, Gedae is able to 
create a virtual model of the target processor that includes 
those components, and use that model to tailor the code 
generation to make maximum use of the components.  
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