
The Impact of Programming Difficulty on Hardware Obsolescence
James Steed (jsteed@gedae.com), William Lundgren (wlundgren@gedae.com), Kerry Barnes (kbarnes@gedae.com)

Gedae, Inc., 1247 N. Church St., Suite 5, Moorestown, NJ 08057

Programming a real time system based on multiple Digital
Signal Processors (DSPs) is a difficult task. Few
programmers can fully harness the power of a DSP because
it requires specialized knowledge of the processor’s
architecture and assembly language. To compensate for
this lack of specialized knowledge, vendors and third
parties provide optimized vector libraries which implement
a select group of algorithms as well as compilers that
optimize specific code constructs. Programs rely on this
middleware to be broad and flexible enough to allow their
applications to meet real time requirements. Processing
data in real time often requires high amounts of parallelism.
Programming large projects across multiple processors
requires much foresight in effectively partitioning the work
and ensuring deadlock and other runtime issues are avoided
once all the parts of the application are brought together.

Since the early 1990s, boards of multiple DSP chips have
been one of the leading target architectures in real time
systems. A series of architectures and instruction sets have
followed, from SHARCs to Power-PCs to AltiVec Power-
PCs to TigerSHARCs. Each successive generation of
hardware provided a small increase in clock speed and
more processors on a single board, along with an
adjustment to the architecture or instruction set that usually
made legacy code nonportable. While these platforms
provided a stable framework to address the issues of
software development, few have addressed these two issues
– how to affectively program a wide range of algorithms for
a processor without intimately knowing its architecture and
assembly code and how to program multiple processors in a
manner that is not fraught with risk. Without addressing
these two issues, programs become tied to a certain
distribution of processing across a certain number of
processors, with little hope of being able to improve that
distribution or better use the processor’s power if problems
arise during development.

Increasingly, field programmable gate arrays (FPGAs) are
being used alongside DSPs as a method for meeting high
data flow requirements through massive parallelism, and
multicore processors (such as the Cell processor) are being
used in place of DSPs because they provide parallelism on a
single chip. The increased use of these two types of
processors does not present new problems. Rather, it
heightens these longstanding problems that developers have
long tried to ignore. Processors like the SHARC offered
high efficiency years ago, but the difficulty of programming
that architecture in assembly did not allow for that
efficiency to be fully utilized. Because the problem was
addressed largely through middleware, programmers could
only address optimizing their applications through a limited
toolbox instead of attacking their problems with their
intelligence and creativity. The Cell processor offers a

vector board of chips which are a vector of processors that
use vector ALUs. This hierarchy of parallelism can be
cloaked with middleware, but doing so increases the
chances it too will be replaced by a new architecture before
its full power is harnessed.

While many have ignored the root issues of implementing
parallel digital systems, several tools have been developed
to address these issues. Gedae is an integrated design
environment for software development on boards of DSPs
or distributed networks (e.g., Linux clusters). Gedae
greatly simplifies the task of software development on these
systems by automatically implementing the distributed
control needed to run an application on a multiprocessor
system (such as the mode control construct shown in Figure
1). Gedae is able to provide efficient code through a three-
pronged approach: 1) utilize optimized vector libraries for
common algorithms like addition and FFTs, 2) create
compiler-like optimizations through knowledge of the
target architecture, and 3) intelligently preplan the
execution of the application so that order of execution,
memory management, communication patterns, and other
issues are determined as much as possible before runtime.
Through the use of tools like Gedae, we can both slow
down hardware obsolescence by making current hardware
more programmable, thus increasing utilization, as well as
more rapidly transition to emerging technologies by
handling that transition through the tool.

Automated Handling of Parallelism

Figure 1 – Distributed control – such as mode
switching – is generated automatically.

Multicore processors, such as the Cell processor, present
several challenges to programmers who wish to fully
exploit the special purpose cores. The Cell is a system on a
chip design (SoC) which houses 9 processing cores. One of
the 9 cores is a central processing unit, or “Power
Processing Element” (PPE). The other 8 cores – called
“Synergistic Processing Elements” (SPE) – are designed for
very compute-intensive, special purpose tasks. To

mailto:jsteed@gedae.com
mailto:wlundgren@gedae.com
mailto:kbarnes@gedae.com

effectively program the chip, the programmer must tackle
the hard problems of distributing work to many processors
in order to take advantage of the architecture. Distributed
control is often one of the most difficult tasks of software
development, and distributing that control to lightweight
cores requires that the control processing also be
lightweight and highly customized to the task at hand.

The programming of an SPE also requires specialized
knowledge, either in using the assembly language for the
SPE or the data types and functional interface of its C/C++
extensions. A developer must have intimate knowledge of
the vector ALU and its pipeline characteristics to
effectively use the SPE. Once an SPE is hand coded using
these language extensions, the code is tied to the Cell
architecture and has very limited portability. An alternate
multicore architecture, e.g., one with 3 PPEs instead of 1
PPE and 8 SPEs, could not be coded with the same
language. A developer given the task to port an application
for the Cell to this alternate architecture would likely have
to start from scratch.

Autocoding using Gedae addresses these problems directly.
Using the same technology it developed for addressing
boards of DSP processors, Gedae can automatically
implement the distributed control for heterogeneous
multicore processors like the Cell architecture. The
distributed control includes a predefined component, the
Runtime Kernel (RTK), which is lightweight enough to run
on processors such as SHARCs and Cell SPEs, and code-
generated components for processors and FPGAs with
insufficient resources to run the RTK. Because the
generated implementation is built to run on a Virtual
Machine, as shown in Figure 2, functionality specified in
Gedae is not tied to a single architecture. Applications
developed for DSP boards in Gedae can be quickly
transitioned to the Cell and future multicore architectures
when the RTK is placed on each core.
Automated Architecture-Based Optimization
Gedae-SFG (Signal Flow Graph) is a single sample
extension to the Gedae programming language that enables
compiler-like optimizations. While core Gedae primitives

Figure 2 – Core Gedae implementation process

Figure 3 – Low pass filter implemented in Gedae-SFG

are written in Ansi-C (with Gedae-specific extensions,
providing efficiency through links to optimized vector
libraries), Gedae-SFG can be used to export code in any
programming language, whether it’s the same generic Ansi-
C, VHDL for generating firmware, or assembler specific to
a fixed processor. The language allows the algorithm to be
viewed at fine detail by both the developer and the tool.
This visibility enables the tool to automate many of the
planning issues associated with using the processor
efficiently, e.g., moving data through registers and local
memory and fully utilizing a vector ALU.

Much like Gedae’s core language, the Gedae-SFG graph
(such as the low pass filter shown in Figure 3) specifies
only the functionality of the graph without regard to the
target or its programming language. Through the Language
Support Package (LSP), target code is exported to
implement the application, and generic Ansi-C code is
created for simulation.

While this technology was developed to support FPGAs,
the technology is also powerful for autocoding assembly-
level code for fixed architectures, from older architectures
like the SHARC processor to emerging technologies like an
SPE on the Cell processor. To allow for these target-based
optimizations, Gedae is provided with information about
the target architecture on the processor level, including the
operations and byte widths for each ALU path, the size of
the register file, the size of the local storage, and how all the
components are connected. By entering this information
into Gedae’s embedded configuration, Gedae is able to
create a virtual model of the target processor that includes
those components, and use that model to tailor the code
generation to make maximum use of the components.

Key

Functional
Specification

Implementation
Specification

Dozens of Compiler Passes

Application Implementation

Virtual Machine

Vendor HW and Tools

Runtime Kernel

User

Gedae

Vendor

References
[1] Analog Devices, System Development and Programming for

the ADSP-21161 SHARC Processor Workshop Slides.

[2] N. Blachford, Cell Architecture Explained, 2005.

[3] J. Kahle, et al., Introduction to the Cell Multiprocessor, IBM
Journal of Research and Development, 2005.

[4] W. Lundgren, et al., Autcoding Sensor Processing
Applications to Run on DSPs and FPGAs, EMRS DTC
Conference, 2006.

