
lrm-1
lrm 11/27/2006

University at Albany, SUNYUniversity of Limerick,
Ireland

Abstract Machines for RASCs
and

Signal/Image Processing

L. Mullin*, J. Raynolds*, I. Grout, J. Ryan, and Q. Li*

University at Albany, SUNY* & University of Limerick, Ireland

HPEC 2006

lrm-2
lrm 11/27/2006

University at Albany, SUNYUniversity of Limerick,
Ireland

Levels of Processor/Memory Hierarchy
continued

• Math and indexing operations in same
expression

• Framework for design space search
– Rigorous and provably correct
– Extensible to complex architectures

Approach

Mathematics of Arrays

Example: “raising” array
dimensionality

y= conv
intricate math

intricate
memory
accesses
(indexing)

(x)

M
em

or
y

H
ie

ra
rc

hy

Parallelism

Main Memory

L2 Cache

L1 Cache

Map

x: < 0 1 2 … 35 >

Map:

< 3 4 5 >
< 0 1 2 >

< 6 7 8 >
< 9 10 11 >

< 12 13 14 >

< 18 19 20 >
< 21 22 23 >

< 24 25 26 >
< 27 28 29 >

< 30 31 32 >

< 15 16 17 >

< 33 34 35 >

P2P1P0

P0

P1

P2

lrm-3
lrm 11/27/2006

University at Albany, SUNYUniversity of Limerick,
Ireland

Abstract Machine Concept

• Abstract Machine is a one-to-one mapping between the various
levels of hardware and software cache, memory, disk, network,
FPGA etc. onto multi-dimensional arrays.

• The Abstract Machine is an algebraic specification of the
algorithm using Mullin’s formalism of A Mathematics of Arrays
(MoA) and its corresponding indexing scheme the psi-calculus.

• The Abstract Machine is an exact Engineering Specification
derived mathematically that can be given to a software engineer
for direct, step by step, implementation into any convenient
hardware and/or software language.

• We use an Abstract Machine approach to the efficient
implementation of our cache-optimized FFT algorithm on a RASC
architecture in which various levels of the FFT are efficiently
distributed over hardware (FPGA) and software.

lrm-4
lrm 11/27/2006

University at Albany, SUNYUniversity of Limerick,
Ireland

Arbitrary RASC/FPGA

Fast-calculations
directly in hardware

Slower calc’s
in software and
controlled by
OS

lrm-5
lrm 11/27/2006

University at Albany, SUNYUniversity of Limerick,
Ireland

Design Flow

Partitioning of software and
hardware operations

Algorithm concept

Create hardware design
(VHDL/schematics)

Create template C-code
file

C-code programming

Hardware/Software integration

lrm-6
lrm 11/27/2006

University at Albany, SUNYUniversity of Limerick,
Ireland

Field Programmable Gate Arrays

For use in RASC systems:

• Large number of available logic gates and interconnect
resources to implement complex DSP functions.

• Specific FPGAs come with dedicated hardware blocks such as
embedded 2’s complement multipliers (combinational logic
designs that do not require multiple clock cycles to complete the
operation) allowing for the support of high-speed operations.

• Specific FPGAs come with embedded SRAM blocks to allow
for temporary storage of data.

lrm-7
lrm 11/27/2006

University at Albany, SUNYUniversity of Limerick,
Ireland

Machine Abstraction

• Memories are viewed as arrays
Machine Abstraction

Computation
Engine

Control Unit

Cache
Memory

Main Memory

Communications

``

External
Control

``

Data I/OKey

Data

Control

Address

M U X

2 -p o in t D F T B u t te rf ly

C a c h e M e m o ry A C a c h e M e m o ry B

M a in M e m o ry

C o n t ro l U n it

In p u t D a ta (I /P) fro m a n d R e s u lts (O /P)
to e x te rn a l p ro c e ss o r s y s te m

M a in an d C a c h e
M em o ry A d dres s

M a in a nd C a c h e
M e m o ry C on tro l

Fig u re 2. F FT a rch itec ture

FFT with Cache Algorithm

lrm-8
lrm 11/27/2006

University at Albany, SUNYUniversity of Limerick,
Ireland

Summary: FFT Cache Algorithm to FFT
Machine with Cache

• Maximize in-cache operations through use of repeated transpose-
reshape operations

– Re-materialize the array to achieve locality.
– Do as many operations in cache as possible and repeat process
– Operations carried out at the price of rearranging
– Cache loop is an iteration space
– Could also be over processors, etc.

• Data blocks, abstract cache sizes, can be of any size (powers of the
radix):

• Optimum performance: tradeoff between reduction of cache
misses and cost of transpose-reshape operations, i. e. rearranging.

• Costs are determined by combining iteration space from normal
from to abstract machine and actual costs of access and control.

• Uniform view and analysis using an array algebra and index
calculus: Conformal Computing.

• Cost-intensive calculations carried out in hardware (FPGA) for
extreme speed seemlessly integrated with faster software calculations
by design.

