
Abstract Machines for RASCs and Signal/Image Processing 
 

 L. Mulin1,2,  J. Raynolds3,  I. Grout4,  J. Ryan4 and Q. Li1 

 

1 Department of Computer Science, College of Computing and Information  
2Department of Physics, College of Arts and Sciences,  

3College of Nanoscale Science and Engineering 
University at Albany, SUNY, Albany, New York State, USA 

4Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland 
 

 
Abstract 
In this paper, we present a novel approach to optimizing the 
implementation of signal processing kernels on 
Reconfigurable Application Specific Architectures (RASCs). 
RASCs expose so many lower level hardware details to the 
software that a formalism that abstracts and allows 
optimization across the hardware/software boundary is 
required. There    exists no such monolithic abstraction to date. 
To address this, we are developing the Conformal 
Computing1 paradigm as a potentially powerful methodology 
for developing optimizations on such kernels. A central 
feature of the Conformal Computing paradigm is the use of a 
single, powerful, matrix/array algebra (A Mathematics of 
Arrays (MoA), and corresponding index calculus (ψ-
calculus)[1]) to describe formally the algorithm, array 
decompositions to processor/memory hierarchies, data 
communications, etc. 
 
Our approach is to capture both the problem and machine 
architecture in one monolithic, parameterized, multi-
dimensional representation. This multi-dimensional 
representation reflects the mapping of the algorithm to the 
hardware by lifting the dimensionality of the algorithm to 
include machine components, e.g., memory, processor, etc. 
We include in our representation a model of implementation 
cost along each machine dimension. Different mappings of 
problem to machine are expressed as re-shapings of the 
combined representation with associated costs. We can then 
use this representation to find not only the best mapping of 
problem to fixed hardware, but also the best machine 
configuration given problem size by minimizing the cost. In 
this way, we provide a uniform framework for reasoning about 
array-based computations by algebraically connecting the 
software and hardware [6] so that we can optimize across the 
boundary between them. 

We will present the motivation for our approach, the basics 
behind our representation, and the theoretical framework for 
reasoning about performance. An integral part of our 

                                                 
1 The name Conformal Computing© is protected. Copyright 2003, The 
Research Foundation of State University of New York, University at Albany. 

presentation is to illustrate how a normal form can provide 
intentional information to tools that instantiate the syntax and 
semantics needed at a particular memory level. The normal 
form provides details of the iteration space and data flow. We 
build upon our processor/cache designs for the FFT [3,5] and 
illustrate how the iteration space for cache can be morphed to 
the iteration space of the FPGA in the RASC. We also discuss 
the difficulties with communicating such intentional 
information to the machine and our progress made to date [2]. 
We will show that our analysis deterministically identifies the 
best mapping via our cost model.  

Introduction 
RASCs represent a revolutionary class of machines that 
provide the capability to optimize across the 
hardware/software boundary via a computing architecture that 
re-structures itself at the micro-architectural level to meet 
changing application requirements with optimal, or near 
optimal, efficiencies. Different mission requirements can be 
supported by changing the allocation of physical resources to 
abstract architectures in response to different mixes of 
processing types, i.e., streaming, threaded, etc. Also, 
reconfiguring the underlying physical hardware becomes 
necessary when certain algorithms, or combinations of 
algorithms, dominate the scientific computation, e.g. FFT. In a 
RASC the overall system must be analyzed to determine what 
portions run on the host and what portions run on the FPGA. 
One also can imagine a network or grid of machines such that 
each had multiple nodes with multiple processors with 
multiple levels of memory AND multiple FPGAs.  
  
In Conformal Computing, reconfiguring the hardware to the 
problem and problem size relies on an abstract architecture 
formulated by the same algebra used for the problem (MoA). 
The ability to reconfigure an architecture in response to 
changing processing, application and mission requirements 
will reduce cost to the DoD for sensor processing systems by 
reducing the hardware complexity and cost, as well as 
development complexity and cost. Additionally, since the 
architecture is abstract, it is portable to many different COTS 



hardware realizations and processing platforms: RASCs, 
GRIDs, NUMAs, etc. 

Realization of an abstract, portable computing architecture 
requires an efficient, flexible representation that efficiently 
maps to hardware constructs. Such a representation can be 
used for design space optimization, program implementation 
and compilation, or run-time hardware allocation and/or 
resource management. The representation must include the 
capability and state of the hardware, including performance 
and cost for the operations resulting from realization of a 
particular algorithm, i.e., memory access, arithmetic 
operations, inter-processor communication, and I/O. The 
representation must retain higher-level information pertinent 
to the algorithm so that changes in the abstract machine 
architecture can be easily propagated back to the algorithm 
implementation. Reconfiguring the hardware will involve 
transformations on this intermediate representation; any 
transformation performed in the course of reconfiguring must 
preserve correctness in a theoretically provable manner. 

 
We are currently working to develop hybrid codes that run 
certain operations in hardware and the balance in software on 
machines such as the SGI MOATB and the Cray XD1.  There 
are numerous obstacles to overcome and there is very little 
documented experience in the literature on how to program 
such machines.  A number of important issues such as 
memory management must be dealt with directly by the user. 
We report on our efforts to simplify the interface to and 
optimize the mapping of algorithms to RASCs. A 
prototyping system (SULU)[2] has been developed for 
enabling the prototyping of RASC algorithms without 
the need to access the RASC system itself. Thus 
algorithm design, development and debug can be 
undertaken and once complete, can be uploaded and run 
on the RASC system. This prototyping system is based 
on a PC (Microsoft® Windows® operating system with 
C-coding) and Xilinx® Inc. SpartanTM-3 FPGA 
development board. This combined with optimisations 
from Conformal Computing promise to produce verified 
designs for both hardware and software realizations. 
 
 

 

Approach 
Our approach in defining a machine abstraction that meets 

the requirements outlined above is to algebraically describe 
the algorithm and architecture using MoA. MoA is an algebra 
that provides the ability to describe array expressions in terms 
of the shapes of their arguments and the capability for 
symbolic verification of n-dimensional array expressions. 
Many array operations have common access patterns that can 
be known a-priori. The code to generate a given access 
pattern is generated by composing indices based on array 

shapes. The Psi Calculus is a calculus of array indexing that 
reduces an MoA array expression to a denotational normal 
form (DNF) via formal linear/or multi-linear transformations 
on the MoA expression. The DNF completely expresses the 
composition of indexing functions and is the semantic normal 
form, i.e., the form in terms of Cartesian coordinates. From the 
DNF, an operational normal form (ONF) is derived that 
expresses the index functions as “start, stop, and stride” 
accesses to memories. For a given architecture, the ONF can 
be theoretically proven to have minimal memory accesses due 
to the materialization of unnecessary intermediate values and 
temporary variables. Since the Psi Calculus has the Church-
Rosser property [3], array expressions can be proven 
equivalent by showing that their normal forms are the same.  

The machine architecture is incorporated into the algorithm 
description by lifting the dimensionality of the arguments by 
the dimensionality of the machine architecture. An example is 
shown in Figure 1. In this example, the array to be operated on 
is a vector (dimensionality = 1), and the abstract machine is 
composed of processors with cache memory (dimensionality = 
2). Since the resulting, monolithic structure is a 3D array, we 
can use MoA and Psi Calculus to represent algebraically an 
algorithm’s implementation (decomposition and mapping to 
processors and memory). Given such an implementation, we 
can prove the equivalence of two algorithm implementations 
and/or machine realizations. Reconfiguring involves a change 
to the abstract machine, which, in our model, changes the 
number and sizes of dimensions in the original representation 
of the problem. Such a restriction affects the DNF and 
consequently the ONF of expressions. Using Psi reduction 
rules (linear and multi-linear transformations), changes to the 
DNF and ONF can be guaranteed to preserve the correctness 
of the algorithm. Since Psi Reduction is guaranteed to produce 
minimal temporaries, the efficiency of the implementation is 
also preserved. From the ONF, the code to implement the 
algorithm can be methodically derived. Since array 
representations and transformation rules are not limited by 
size and dimensionality, such an approach is inherently 
scalable. Costs along each dimension are included in our 
model. 
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Figure 1: (a) the original vector; (b) inclusion of cache; (c) 
inclusion of processors. 



Experiments 
The morphing concepts will be demonstrated by expressing 

one or two representative signal processing kernels as well as 
the abstract machine using MoA as described above. We will 
demonstrate the ability of the abstract machine to express 
machine morphs using the MoA representation. We will show 
how computation and communication costs can be 
deterministically derived from the abstract machine model, 
and verify the model by comparing estimates with measured 
performance. Finally, we will demonstrate the mapping of the 
abstract machine to actual hardware via kernel 
implementations on representative RASC hardware. (SGI 
MOATB) To show the viability of our approach in modeling 
performance and cost for array expressions, we use a simple 
signal-processing kernel such as the 1-d FFT. In the talk, we 
will go through pictorially the MoA representation for the 
FFT, show the DNF and ONF, show the representation with 
processors and memory added, with the FPGA, and then show 
the costs. 

Conclusions and Future Research 
We have demonstrated a uniform approach to reasoning 

about signal/image processing using an algebraic framework 
and reconfigurable architectures. Our goal is to produce fast, 
portable, scalable, reconfigurable, mathematically correct code 
without requiring huge investments in software development. 
We have described our approach to machine abstraction, 
explained the theoretical framework for proving correctness, 
and given an example of our cost model using a COTS RASC. 
The representation we have designed encapsulates the 
machine via parameters. By varying these parameters and 
searching the design space, we can determine both the best 
decomposition and mapping to hardware and/or the best 
hardware environment for problem size by minimizing the 
costs from our machine model. 

Future research is to develop the algorithms, methods and 
trade-off knowledge base to search the design space 
efficiently. The knowledge base would contain, power and 
area efficiency, utilization, latency and/or throughput, etc. The 
transformations are linear or multi-linear and thus 
mechanizable, although we have demonstrated them manually. 
Experiments to mechanize MoA and Psi Reduction were 
validated at MIT/LL [4]. Extensions to program block 
optimizations were also validated.  These experiments could 
lead to automatic code generation from the ONF. Future 
research also involves identifying families of algorithm data 
flows to extend these types of optimizations across other 
disciplines, e.g., simulation science, scientific computation. 
We also plan to investigate other RASC architectures, more 
complex kernels and abstract machine models. 
 
This work is the result of an interdisciplinary and international 
collaborative effort.  Our team includes the coordinated efforts 
of computer scientists, physicists and electrical engineers. 
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