
Abstract Machines for RASCs and Signal/Image Processing

 L. Mulin1,2, J. Raynolds3, I. Grout4, J. Ryan4 and Q. Li1

1 Department of Computer Science, College of Computing and Information
2Department of Physics, College of Arts and Sciences,

3College of Nanoscale Science and Engineering
University at Albany, SUNY, Albany, New York State, USA

4Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland

Abstract
In this paper, we present a novel approach to optimizing the
implementation of signal processing kernels on
Reconfigurable Application Specific Architectures (RASCs).
RASCs expose so many lower level hardware details to the
software that a formalism that abstracts and allows
optimization across the hardware/software boundary is
required. There exists no such monolithic abstraction to date.
To address this, we are developing the Conformal
Computing1 paradigm as a potentially powerful methodology
for developing optimizations on such kernels. A central
feature of the Conformal Computing paradigm is the use of a
single, powerful, matrix/array algebra (A Mathematics of
Arrays (MoA), and corresponding index calculus (ψ-
calculus)[1]) to describe formally the algorithm, array
decompositions to processor/memory hierarchies, data
communications, etc.

Our approach is to capture both the problem and machine
architecture in one monolithic, parameterized, multi-
dimensional representation. This multi-dimensional
representation reflects the mapping of the algorithm to the
hardware by lifting the dimensionality of the algorithm to
include machine components, e.g., memory, processor, etc.
We include in our representation a model of implementation
cost along each machine dimension. Different mappings of
problem to machine are expressed as re-shapings of the
combined representation with associated costs. We can then
use this representation to find not only the best mapping of
problem to fixed hardware, but also the best machine
configuration given problem size by minimizing the cost. In
this way, we provide a uniform framework for reasoning about
array-based computations by algebraically connecting the
software and hardware [6] so that we can optimize across the
boundary between them.

We will present the motivation for our approach, the basics
behind our representation, and the theoretical framework for
reasoning about performance. An integral part of our

1 The name Conformal Computing© is protected. Copyright 2003, The
Research Foundation of State University of New York, University at Albany.

presentation is to illustrate how a normal form can provide
intentional information to tools that instantiate the syntax and
semantics needed at a particular memory level. The normal
form provides details of the iteration space and data flow. We
build upon our processor/cache designs for the FFT [3,5] and
illustrate how the iteration space for cache can be morphed to
the iteration space of the FPGA in the RASC. We also discuss
the difficulties with communicating such intentional
information to the machine and our progress made to date [2].
We will show that our analysis deterministically identifies the
best mapping via our cost model.

Introduction
RASCs represent a revolutionary class of machines that
provide the capability to optimize across the
hardware/software boundary via a computing architecture that
re-structures itself at the micro-architectural level to meet
changing application requirements with optimal, or near
optimal, efficiencies. Different mission requirements can be
supported by changing the allocation of physical resources to
abstract architectures in response to different mixes of
processing types, i.e., streaming, threaded, etc. Also,
reconfiguring the underlying physical hardware becomes
necessary when certain algorithms, or combinations of
algorithms, dominate the scientific computation, e.g. FFT. In a
RASC the overall system must be analyzed to determine what
portions run on the host and what portions run on the FPGA.
One also can imagine a network or grid of machines such that
each had multiple nodes with multiple processors with
multiple levels of memory AND multiple FPGAs.

In Conformal Computing, reconfiguring the hardware to the
problem and problem size relies on an abstract architecture
formulated by the same algebra used for the problem (MoA).
The ability to reconfigure an architecture in response to
changing processing, application and mission requirements
will reduce cost to the DoD for sensor processing systems by
reducing the hardware complexity and cost, as well as
development complexity and cost. Additionally, since the
architecture is abstract, it is portable to many different COTS

hardware realizations and processing platforms: RASCs,
GRIDs, NUMAs, etc.

Realization of an abstract, portable computing architecture
requires an efficient, flexible representation that efficiently
maps to hardware constructs. Such a representation can be
used for design space optimization, program implementation
and compilation, or run-time hardware allocation and/or
resource management. The representation must include the
capability and state of the hardware, including performance
and cost for the operations resulting from realization of a
particular algorithm, i.e., memory access, arithmetic
operations, inter-processor communication, and I/O. The
representation must retain higher-level information pertinent
to the algorithm so that changes in the abstract machine
architecture can be easily propagated back to the algorithm
implementation. Reconfiguring the hardware will involve
transformations on this intermediate representation; any
transformation performed in the course of reconfiguring must
preserve correctness in a theoretically provable manner.

We are currently working to develop hybrid codes that run
certain operations in hardware and the balance in software on
machines such as the SGI MOATB and the Cray XD1. There
are numerous obstacles to overcome and there is very little
documented experience in the literature on how to program
such machines. A number of important issues such as
memory management must be dealt with directly by the user.
We report on our efforts to simplify the interface to and
optimize the mapping of algorithms to RASCs. A
prototyping system (SULU)[2] has been developed for
enabling the prototyping of RASC algorithms without
the need to access the RASC system itself. Thus
algorithm design, development and debug can be
undertaken and once complete, can be uploaded and run
on the RASC system. This prototyping system is based
on a PC (Microsoft® Windows® operating system with
C-coding) and Xilinx® Inc. SpartanTM-3 FPGA
development board. This combined with optimisations
from Conformal Computing promise to produce verified
designs for both hardware and software realizations.

Approach
Our approach in defining a machine abstraction that meets

the requirements outlined above is to algebraically describe
the algorithm and architecture using MoA. MoA is an algebra
that provides the ability to describe array expressions in terms
of the shapes of their arguments and the capability for
symbolic verification of n-dimensional array expressions.
Many array operations have common access patterns that can
be known a-priori. The code to generate a given access
pattern is generated by composing indices based on array

shapes. The Psi Calculus is a calculus of array indexing that
reduces an MoA array expression to a denotational normal
form (DNF) via formal linear/or multi-linear transformations
on the MoA expression. The DNF completely expresses the
composition of indexing functions and is the semantic normal
form, i.e., the form in terms of Cartesian coordinates. From the
DNF, an operational normal form (ONF) is derived that
expresses the index functions as “start, stop, and stride”
accesses to memories. For a given architecture, the ONF can
be theoretically proven to have minimal memory accesses due
to the materialization of unnecessary intermediate values and
temporary variables. Since the Psi Calculus has the Church-
Rosser property [3], array expressions can be proven
equivalent by showing that their normal forms are the same.

The machine architecture is incorporated into the algorithm
description by lifting the dimensionality of the arguments by
the dimensionality of the machine architecture. An example is
shown in Figure 1. In this example, the array to be operated on
is a vector (dimensionality = 1), and the abstract machine is
composed of processors with cache memory (dimensionality =
2). Since the resulting, monolithic structure is a 3D array, we
can use MoA and Psi Calculus to represent algebraically an
algorithm’s implementation (decomposition and mapping to
processors and memory). Given such an implementation, we
can prove the equivalence of two algorithm implementations
and/or machine realizations. Reconfiguring involves a change
to the abstract machine, which, in our model, changes the
number and sizes of dimensions in the original representation
of the problem. Such a restriction affects the DNF and
consequently the ONF of expressions. Using Psi reduction
rules (linear and multi-linear transformations), changes to the
DNF and ONF can be guaranteed to preserve the correctness
of the algorithm. Since Psi Reduction is guaranteed to produce
minimal temporaries, the efficiency of the implementation is
also preserved. From the ONF, the code to implement the
algorithm can be methodically derived. Since array
representations and transformation rules are not limited by
size and dimensionality, such an approach is inherently
scalable. Costs along each dimension are included in our
model.

n
n
c

n
cp

Loop over
cache

Loop over
processors

 (a) (b) (c)
Figure 1: (a) the original vector; (b) inclusion of cache; (c)
inclusion of processors.

Experiments
The morphing concepts will be demonstrated by expressing

one or two representative signal processing kernels as well as
the abstract machine using MoA as described above. We will
demonstrate the ability of the abstract machine to express
machine morphs using the MoA representation. We will show
how computation and communication costs can be
deterministically derived from the abstract machine model,
and verify the model by comparing estimates with measured
performance. Finally, we will demonstrate the mapping of the
abstract machine to actual hardware via kernel
implementations on representative RASC hardware. (SGI
MOATB) To show the viability of our approach in modeling
performance and cost for array expressions, we use a simple
signal-processing kernel such as the 1-d FFT. In the talk, we
will go through pictorially the MoA representation for the
FFT, show the DNF and ONF, show the representation with
processors and memory added, with the FPGA, and then show
the costs.

Conclusions and Future Research
We have demonstrated a uniform approach to reasoning

about signal/image processing using an algebraic framework
and reconfigurable architectures. Our goal is to produce fast,
portable, scalable, reconfigurable, mathematically correct code
without requiring huge investments in software development.
We have described our approach to machine abstraction,
explained the theoretical framework for proving correctness,
and given an example of our cost model using a COTS RASC.
The representation we have designed encapsulates the
machine via parameters. By varying these parameters and
searching the design space, we can determine both the best
decomposition and mapping to hardware and/or the best
hardware environment for problem size by minimizing the
costs from our machine model.

Future research is to develop the algorithms, methods and
trade-off knowledge base to search the design space
efficiently. The knowledge base would contain, power and
area efficiency, utilization, latency and/or throughput, etc. The
transformations are linear or multi-linear and thus
mechanizable, although we have demonstrated them manually.
Experiments to mechanize MoA and Psi Reduction were
validated at MIT/LL [4]. Extensions to program block
optimizations were also validated. These experiments could
lead to automatic code generation from the ONF. Future
research also involves identifying families of algorithm data
flows to extend these types of optimizations across other
disciplines, e.g., simulation science, scientific computation.
We also plan to investigate other RASC architectures, more
complex kernels and abstract machine models.

This work is the result of an interdisciplinary and international
collaborative effort. Our team includes the coordinated efforts
of computer scientists, physicists and electrical engineers.

References
1. L.R. Mullin, A Mathematics of Arrays, PhD Thesis,

Department of Computer Science, Syracuse University,
December, 1988.

2. I. Grout. L. Mullin, J. Ryan, and Q. Li, “A Desktop

RASC Prototyping System”, under review ESS
Conference, October, 2006.

3. L. Mullin and J. Raynolds, "Optimizing the Fast Fourier

Transform over memory hierarchies for embedded digital
systems: a fully in-cache algorithm", In Proceedings of
the High Performance Embedded Computing (HPEC)
Workshop, MIT Lincoln Lab, September 2004, (2004).
See also (preprints):
http://trr.albany.edu/documents/TR00004 and,
http://trr.albany.edu/documents/TR00005

4. E. Rutledge, et. al., “Monolithic Compiler Experiments

using C++ Expression Templates”, HPEC, 2002.

5. J. Raynolds and L. Mullin, "Applications of Conformal

Computing techniques to problems in Computational
Physics: the Fast Fourier Transform", Comp. Phys.
Comm. 170, 1 (2005).

6. L. Mullin, "A uniform way of reasoning about array-

based computation in radar: algebraically connecting the
hardware/software boundary", Digital Signal Processing,
15, 466 (2005).

	Abstract Machines for RASCs and Signal/Image Processing
	
	Abstract
	Introduction
	Approach
	Experiments
	Conclusions and Future Research
	References

