

Reusing Verification Components in System-Level Modeling Environments

Ambar Sarkar, Jim Crocker
Paradigm Works, Inc. MA, USA

{ambar.sarkar|jim.crocker}@paradigm-works.com

Bob Ionta
The MathWorks, Inc, MA, USA

bob.ionta@mathworks.com.

Introduction1

As the specification of a system becomes increasingly
complex, the task of verifying its implementation becomes
exponentially harder. In the domain of functional
verification of digital hardware, most state of the art
verification environments have evolved into complex
distributed software architectures, composed of a number of
verification components such as stimulus generators,
response checkers, monitors etc. In an attempt to create
realistic execution scenarios for the system, the verification
engineer executes a model of the system along with these
verification components, each executing concurrently and
collectively exhibiting complex interaction patterns. Several
hardware verification languages such as Vera, e, SystemC,
and SystemVerilog[1,2,34] have emerged to describe these
complex verification components. In addition, advanced
verification methodologies such as VMM, AVM, and
eRM[5,6,7] have been developed by EDA tool vendors and
the user community to create such environments efficiently
and in a reusable manner.

Complementary to the verification effort, system architects
and implementers require means of communicating
requirements and specifications that is reliable and
understandable at the level of whole-system behavior as
well as detailed implementation levels. The inadequacy of
paper based specifications leads system designers to prefer
to communicate via executable specifications such as
Simulink® models[8]. The entire system can be modeled
and simulated using Simulink®, thus lending provable
accuracy and reliability to the communication. Refinements
to the model can incorporate implementation specific
parameters into the simulations and validate the
implementation in the system context with system level
stimuli. The same mechanism that allows addition of bit-
true and cycle-accurate subsystem implementations to the
system model can be used to incorporate detailed
transaction level models as well, providing the ability to
thoroughly validate protocols in context and with the
controllability and features those models provide.

In this paper, we present a novel approach of taking
advantage of an emerging verification language and reuse-
based verification methodologies to reduce the complexity
of the tasks of both functional verification as well as
system-level modeling. Specifically, we show how to use

SystemVerilog, a hardware verification language (HVL)
recently standardized by IEEE, to model a system at various
levels of abstraction. Next, we show how we take
advantage of emerging verification methodologies such as
AVM and VMM to define standard interfaces for
verification components. We then present a case study that
illustrates how an AVM-compliant verification component
can be used to generate more accurate transaction-level
stimulus in system-level modeling environments such as
Simulink®.

SystemVerilog – A Hardware Verification
Language
Verification of a complex system places unique demands on
the language used for verification. The first that comes to
mind is the ability to perform transaction level modeling of
the interaction between the design and the environment. In
addition to speeding up the simulation, having transaction-
level view of the various interactions within the system
helps more efficient debugging.

Another requirement of a HVL is to model the environment
and its interaction with the design rather than just creating
stimulus sets manually. For example, automatic creation of
rich stimulus scenarios can be possible if there are language
constructs to specify constrained-random parameters for the
stimulus generating code. This enables the creation of
stimulus sets automatically by a tool rather than by hand.

An additional set of language constructs should allow
aspects of a design to be described declaratively rather than
procedurally. These constructs are known as assertions,
which can describe the complex temporal behaviors of the
system concisely and unambiguously. Finally, the language
should provide a means to quantify functional coverage,
Functional coverage specifies the degree to which the
verification task for the system has been accomplished.

Interestingly, all of these features of an HVL can and
should be used for system-level modeling as well.

The remainder of this section provides examples of the key
features of SystemVerilog that can be very useful in a
system-level modeling environment such as Simulink®.

Advanced Verification Methodologies

Figure 1: AVM Based Verification Environment

Another important reason for increased complexity in the
verification environment is the fact that many of the
verification components may be developed externally by
third party vendors, or are available as legacy. Whenever
feasible, project managers would like to reuse these
components to avoid the cost and schedule pressure of
developing them from scratch. It is often a big challenge
trying to understand how these externally developed models
work, let alone try to make these models work together. To
address this concern, the EDA developers and the user
community have collaborated to come up with several
powerful verification methodologies, whose primary
objectives are:

• to ensure a high quality verification environment,

• to enable reuse of verification components,

• to enable testbenches to be assembled out of
reusable blocks,

• to ensure that verification IP is of a consistent
quality,

• to encourage a common vocabulary among
verification engineers

There are three specific ways these verification
methodologies accomplish these objectives:

a. By codifying the flow of a simulation session. These
methodologies specify an order in which all the components
are instantiated, randomized, activated, and shut down,

b. By standardizing the interface of the verification
components, and using object-oriented approach to refine
their behavior, and,

c. By providing a number of guidelines that should be
followed for creating methodology compliant models.

Figure 1 above shows a typical verification environment
based on AVM, an advanced verification methodology
supported by a major EDA tool vendor.

Integrating VMM-compliant components in
System-level Modeling Environments

Figure 2: Integrating AVM Compliant Verification

Environment With Simulink®

Figure 2 shows how a AVM based verification component
can be integrated within a Simulink® based system-level
modeling environment. Instead of using a Verilog
implementation of the design, one can replace it with a
Verilog wrapper, called the Simulink HDL cosimulation
block in the diagram. This wrapper allows the
communication of both stimulus and responses between the
verification environment and a concurrent Simulink®
model execution session. As a result, the Simulink®
modeling environment can take advantage of the rich
stimulus generation and even response checking offered by
the verification environment.

References
[1] OpenVera Language Reference Manual: Testbench, Version
1.4.3, September 2005

[2] IEEE 1647, The e Functional Verification Language Working
Group, http://www.ieee1647.org

[3] OSCI WG Verification: SystemC Verification Standard
Specification V1.0p1. http://www.systemc.org.

[4] IEEE P1800, "Standard for SystemVerilog Unified Hardware
Design, Specification and Verification Language," IEEE, 2005

[5] Verification Methdology Manual for SystemVerilog, Janick
Bergeron, Eduard Cerny, Alan Hunter, Andrew Nightingale,
Springer, 2005

[6] Verification Cookbook, AVM Library Documentation,
Mentor Graphics, 2006

[7] eRM – e Reuse Methodology,
http://www.verisity.com/products/erm.html

[8] Simulink® –Simulation and Model-based Design
http://www.mathworks.com/products/simulink

http://www.ieee1647.org/
http://www.verisity.com/products/erm.html
http://www.mathworks.com/products/simulink

