
HPEC LM VSIPL++ STATUS -- 9/21/06 1

ObjectiveObjective
•• Determine the suitability Determine the suitability CodeSourceryCodeSourcery’’ss VSIPL++ VSIPL++

implementation for realimplementation for real--time signal processingtime signal processing
–– In the context of a Mercury In the context of a Mercury PowerStreamPowerStream 7000 and a 7000 and a

targeted signal processing applicationtargeted signal processing application
–– In comparison to vendor tuned VSIPL Core In comparison to vendor tuned VSIPL Core LiteLite and and Vendor Vendor

native math call (Mercurynative math call (Mercury’’s Scientific Algorithm Library)s Scientific Algorithm Library)

Executive SummaryExecutive Summary
•• The current VSIPL++ implementation is rapidly evolving into a The current VSIPL++ implementation is rapidly evolving into a

legitimate reallegitimate real--time software programming tooltime software programming tool
–– improves improves software development productivitysoftware development productivity
–– CodeSourceryCodeSourcery is rapidly and aggressively tuning codeis rapidly and aggressively tuning code
–– several operations do not yet meet the performance of several operations do not yet meet the performance of

VSIPL Core VSIPL Core LiteLite or Mercury SALor Mercury SAL
–– basic parallel computation obtains improved performance basic parallel computation obtains improved performance

using sound principlesusing sound principles
•• users need to ensure communication overhead is users need to ensure communication overhead is

properly managedproperly managed

A Comparison of VSIPL++ Performance A Comparison of VSIPL++ Performance
to VSIPL and Mercury SALto VSIPL and Mercury SAL

HPEC LM VSIPL++ STATUS -- 9/21/06 2

Application Mode Application Mode ““AA”” Performance ModelPerformance Model
ResultsResults

Processing Estimates (Mode A), VSIPL++ vs. VSIPL vs. Mercury SAL

0

1

10

100

1,000

10,000

100,000

1,000,000

 8 16

 32

 64

 12
8

 25
6

 51
2

 1,
02

4
 2,

04
8

 4,
09

6
 8,

19
2

 16
,38

4
 32

,76
8

 65
,53

6
 13

1,0
72

Vector Size n

Ti
m

e
(u

s)

Predicted SAL
Measured VSIPL (not in cache)
Measured VSIPL (in cache)
Measured VSIPL++ (not in cache)
Measured VSIPL++ (in cache)

Best Case Fit
 into L1 Cache

Best Case Fit
 into L2 Cache

•• Performance model built by timing individual vector operationsPerformance model built by timing individual vector operations
•• Using n elements per vector,Using n elements per vector,

–– T(fT(fxx(n(n)) represents the time to perform a vector operation)) represents the time to perform a vector operation ““xx””
–– TTAA(F(n(F(n)) represents the time to complete Application Mode)) represents the time to complete Application Mode ““AA””

•• The models in this study use seven basic vector operations, soThe models in this study use seven basic vector operations, so
T(F(nT(F(n)) = aT(f)) = aT(f11(n)) +bT(f(n)) +bT(f22(n))+cT(f(n))+cT(f33(n))+(n))+……+gT(f+gT(f77(n))(n))

HPEC LM VSIPL++ STATUS -- 9/21/06 3

Parallel PerformanceParallel Performance
Floating Point, Out of Place, Element-wise Vector Multiplication on the Mercury PowerStream

VSIPL++ Serial vs. Parallel

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

 8

 1
6

 3
2

 6
4

 1
28

 2
56

 5
12

 1
,0

24

 2
,0

48

 4
,0

96

 8
,1

92

 1
6,

38
4

 3
2,

76
8

 6
5,

53
6

 1
31

,0
72

Vector Size n

Ti
m

e
(u

s)

VSIPL++ serial
VSIPL++ 2 processors
VSIPL++ 4 processors
VSIPL++ w/ distribution and collection, 2 processors
VSIPL++ w/ distribution and collection, 4 processors

•• Using VSIPL++ Parallel Maps to handle data distribution and collUsing VSIPL++ Parallel Maps to handle data distribution and collectionection
–– Developers still need to ensure there is sufficient computation Developers still need to ensure there is sufficient computation to to

offset additional overhead of distribution data and collecting offset additional overhead of distribution data and collecting
resultsresults

