A Comparison of VSIPL++ Performance to VSIPL and Mercury SAL

Dr. Thomas Steck
Lockheed Martin MS2, thomas.f.steck@lmco.com

Introduction

Commercial software vendors are starting to sell VSIPL++
implementations for several computer platforms. The
promise of improved productivity and inherent support for
parallelism is attractive, but performance is critical. This
paper presents some results on raw VSIPL++ performance
and extends to locally developed performance models being
used to verify system sizing for a radar signal processing
application. CodeSourcery VSIPL++ 1.1 is compared to
Mercury’s VSIPL Core Lite and SAL libraries. A Mercury
PowerStream 7000 with Freescale 7447A processors is
used for testing raw computational performance.
Additionally, the Rapid IO fabric of the PowerStream
combined with Verari’s MPI/Pro is used to take a first look
at VSIPL++ parallel performance.

VSIPL++

VSIPL++ is an extension to the Vector Signal Image
Processing Library API with support for C++ bindings.
The library provides an open-standards API with primitives
frequently used in embedded signal and image processing.
CodeSourcery’s VSIPL++ 1.1 is one of the first commercial
versions of VSIPL++ available. In addition to being
compliant with the VSIPL++ 1.0 standard, parallel
constructs using the Message Passing Interface (MPI) API
are incorporated. The claims are VSIPL++ increases
productivity though object-oriented syntax, improves
performance through layering on other standard libraries
and vendor tuned libraries, and provides potential
performance gains from parallel processing.

Performance Models

It is sometimes the case that the engineers who specify a
computer system are not the same people that develop the
final application software that will run on the system.
Primitive performance models can assist these engineers
with sizing the target computer system. In a particular
radar signal processing application of interest, a number of
vector processing applications are needed. These
operations are

*  Vector-Vector Addition

*  Scalar-Vector Multiplication

*  Vector-Vector Multiplication (dot product)
*  Vector-Vector Greater-than (element-wise)
*  Vector-Vector Max (element-wise)

*  Vector-Vector Logical AND (element-wise)
*  Vector-Vector Logical OR (element-wise)

For each of the operations, the time as a function of the
vector length is measured. The vector length can be as
short as 8 or as long as 128k for the application of interest.

Letting T(x(n)) represent the time it takes to perform
operation x on a vector (or vectors) of length n, the
performance model looks like

T(F(n)) = aI{(fi(n)) +bT(f,(n))+cT(fs(n))+...+gT(f;(n)),

with F representing a higher level radar processing
function, such as detection thresholding.

Quantitative Comparison

The first set of figures in this section compare the
performance of equivalent Mercury SAL, VSIPL, and
CodeSourcery VSIPL++ operations. Figure 1 shows how
the performance of VSIPL compares to Mercury SAL on
the PowerStream 7000. This figure will be updated to
reflect the measured performance of the equivalent
VSIPLA4+ call.

Floating Point Vector Dot Product on the Mercury PowerStream
VSIPL vs. SAL

10000.00 ‘ ‘ ‘
—+— VSIPL (DRAM)
VSIPL (L2 Cache)
1000.00 +—— SAL (DRAM)
—+SAL (L2 Cache)

_»

100.00

10.00

Time (us)

A N T I U T A - Y
NN R S AN
i X
Vector Size n

Figure 1. Vector-Vector Multiplication Comparison

Using the performance model for “Mode A”, VSIPL and
VSIPL++ are compared to SAL based on Mercury’s
predictions. Estimated times are available for every
Mercury SAL call based on whether the data is L1 or L2
cache or DRAM. The times are given for 1,024 point
vectors, with all other vector lengths estimated by dividing
by 1,024 and multiplying by the new length. Since the L1
and L2 cache are limited in size (32KB and 512KB,
respectively), the estimates for the L1 cache stop at 1K
words, and for the L2 cache at 32K words. This plot will
be updated to include VSIPL++ measured performance.



Processing Estimates (Mode A), VSIPL Measured vs. Mercury SAL Predictions
100,000
—s— Measured VSIPL (not in cache) ‘)
= ¢ =Measured VSIPL (in cache) /./{/ X
10000 || —+— Predicted SAL (L1 Cache) 12
Predicted SAL (L2 cache) o > L
—#— Predicted SAL (not in cache) o K o
K P ¢
1,000 —— %
= 0 , *
n I P
2 - - .
o 100 % -
E ST
= ._,0_....%.-3--0" Best Case Fit —,
10 __ intol2Cache
X .
X ] &
X
1 A
« Best Case Fit
“ into L1 Cache
ol *
R . B S U . LN R Y 4
A A DR G A N
Vector Size n

Figure 2. "Mode A" Floating point performance comparison
VSIPL++ Trade Studies

Standard VSIPL has a different function name for each
numerical type. For example, vsip_vadd_f performs
vector-vector addition on two single-precision floating
point vectors, while vsip_vadd_d operates on two double-
precision floating point vectors. This means that a global
search and replace is required to change numerical
precision. With VSIPL++, a single line change is all that is
needed to switch between numerical type representations.
In the previous section, every floating point number was
represented as a single-precision number. The time to
perform the same operations is modeled now using integers
and double precision floating point. For this study, any
additional checks for integer overflow is ignored.

Latency constraints may demand operations be performed
in parallel. CodeSourcery VSIPL++ assists the developer
by supporting the single program multiple datastream
(SPMD) model. Each processor executes the same code,
but operates on its local portion of the data. Operands
(vectors in this case) are mapped to a set of processors. The
user must specify the map. The VSIPL++ operators are
then called the same way as they were for the single
processor program. If data is needed from another
processor, VSIPL++ uses MPI calls to transfer the data on
demand.

The performance of two different functions is measured
using up to 4 processors. The first function is
embarrassingly parallel so no additional communication is
required once the data is distributed to the processors. The
second function requires a small amount of data to be
shared at the edge (first several or last several elements) of
the vectors. Figure 3 shows the performance in the
embarrassingly parallel case. The data shown is predicted
parallel performance for VSIPL and will be updated to
include measured parallel performance using VSIPL++.

Processing Estimates (Mode A), Single and Dual Processor
100,000

—=—VSIPL (p=1, DRAM)
+ VSIPL (p=1, L2 cache)
VSIPL (
(

p=2, DRAM) 7
VSIPL (p=2, L2 cache) <
10,000

1,000 Z

Time (us)

100

© > o © v > ©
® & F LS & & & Qv
Vector Size n

Figure 3. "Mode A" parallel performance.
Conclusions and Recommendations

The use of VSIPL++ is expected to improve productivity by
reducing the number of lines of code required for signal
processing applications, while preserving or improving
serial performance. The support for parallel processing is
convenient for some embarrassingly parallel cases, but the
lack of non-blocking communications currently limits
potential performance gains when using multiple
processors. Future versions of VSIPL++ should continue to
add support for parallel processing to include overlapping
data distributions and non-blocking communicators.

References

[1] www.codesourcery.com

[2] www.mc.com

[3] www.mpi-softtech.com

[4] www.vsipl.org



