

Extending the VSIPL standard to other precisions: Gaining the full
performance of current processors

Albert Garrett
Verari Systems Software, Inc.

110 12th Street North Suite D103
Birmingham, AL 35901

(205) 397-3159
agarrett@verarisoft.com

Anthony Skjellum

Verari Systems Software, Inc.
110 12th Street North Suite D103

Birmingham, AL 35901
(205) 397-3141

tony@verarisoft.com

Abstract1
Given that execution time is a key value in high-
performance embedded computing, and that the adoption-
rate of COTS middleware continues to increase in response
to schedule constraints, the authors demonstrate that by
extending the offering of the VSIPL standard to other
precisions, significant performance improvements can be
made in execution time without significant investments in
new development or abandoning the standard API. Further,
this paper offers design constraints for understanding when
such steps can be taken and how best to utilize the full
capabilities of the processors already in the field. Standard
VSIPL API plus “hints” will complement design guidelines
for when to use the accelerated but limited precision
alternatives of key operations.

Introduction
The authors first establish a baseline of performance for the
single-precision, FFT algorithm on Pentium 4 and PPC74xx
processors as a function of problem size. This baseline is
well-established by both free and commercial
implementations of the FFT in the VSIPL framework.
Next, the potential advantages of computing the FFT with
integer precisions are discussed. The potential pitfalls of
fixed-point operations on these processors is also discussed,
including dynamic-range growth and quantization loss.
Finally, the integer-based performance of the FFT is
presented. Logical extensions to the standard are
suggested in terms of API to directly include integer
precisions for signal processing, particularly emphasizing
16-bit precisions, but with equivalent impact on other
integer precisions.

Next, the paper describes a special, low-precision version of
the single-precision FFT that works with integer precision
underlying it, and exploits the existing VSIPL single-

Disclaimers and footnotes.

precision API plus a hint. Auxiliary information needed to
assure limited distortion is provided as guides to users.
Given the enhanced performance afforded by lower-
precision computation, primarily owing to greater
concurrency in the vector units and lower memory
bandwidth requirements for smaller operands, users are
offered a convenient alternative for problems that are less
demanding. Opportunities to grow the applicability of
these methods by additional scaling and windowing are
mentioned.

Previously, one of the authors and others explored lower
precision VSIPL for a Java-enabled, ARM-based PDA[1].
These processors were incapable of floating point, but
fixed-point libraries (still relatively slow) could be used
validly to emulate floating-point in VSIPL and use VSIPL
from Java as a side effect. This effort complements the
previous one by intentionally using integer operations for
specific classes of problems stored in floating point format,
but subject to limited dynamic range.

Other areas of potential enhancement include the
acceleration of double-precision operations, using single-
precision plus iterative refinement approaches for either
matrix-matrix operations, or some factorizations. Previous
classical work on this [3], plus recent work by others on
SIMD processors [4], with applicability to VSIPL is
offered.

mailto:tony@verarisoft.com

Figure 1: Typical FFT Performance plot, MFlops v log(N).

Other applications of fixed-point, and block-floating-point
[2] in VSIPL are suggested, including opportunities to
extend the standard. Issues of SIMD formulation for these
techniques are mentioned.

 Issues of precision and portability with specialized
precisions are considered, as these were previous stumbling
blocks to standardizing special precisions in the standard.

References
[1] Alford, Torey; Shah, Vijay; Skjellum, Anthony; Younan,

Nicolas; Taylor, Claybourne. Interfacing Java and VSIPL
Applications. Concurrancy – Practice and Experience. Vol
17 number 8, 2005. pp 919-940.

[2] Mitra, Abhijit. On Roundoff errors in Block-floating-point
Arithmetic. IETE Journal of Research, vol 50 no5, Sept
2005.

[3] Oppenheim and Weinstien. “Effects of Finite Register
Length in Digital Filtering and Fast Fourier Transform,”
Proc. IEEE, August 1972, pp. 957-76.

[4] Buttari, Alfredo; Dongerra, Jack; Kurzak, Jakub; Langua,
Julie; Luszczek, Piotr. “Revising Iterative Refinement for
Linear Systems.” http://www.cs.utk.edu/~julie/iter-ref/

http://www.cs.utk.edu/~julie/iter-ref/

