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Non-combinatorial tracking 
The major computational challenge of multi-target tracking 
in clutter is solving the report-to-track association problem. 
Multiple hypothesis tracking (MHT) [4] is an approximate 
solution that tries to limit the combinatorial complexity of 
assignment data to models in multiple frames. MHT 
processing and memory requirements grow exponentially 
with the increased number of frames used to resolve the 
associations [5]. In addition, a real-time realization of an 
MHT  tracker is difficult due to the complexity of data 
movement required to manage track hypotheses. This data 
movement leads to inefficient utilization of embedded 
processors. 

Dynamic Logic (DL) algorithm [1] performs data 
association without combinatorial complexity. The 
approach is designed for multi-target high-clutter scenarios 
in which combinatorial trackers have impractically high 
complexity. Thus, DL tracker can operate on GMTI data 
with low detection thresholds and detect very low signal 
tracks. DL algorithm works directly on contiguous blocks 
of data making it suitable for embedded applications. 

In this paper, we study computational complexity and real-
time requirements of multi-target track detection in high 
GMTI clutter by DL algorithm.  

Dynamic Logic tracking algorithm 
The Dynamic Logic tracking algorithm is described in [1]. 
Dynamic Logic maximizes likelihood of batch frames of 
measurements over possible target trajectories. Direct 
maximum likelihood methods often require a search over a 
very fine grid in order to find an initial point of a local 
optimization algorithm because the likelihood is a multi-
dimensional function of the parameters describing the target 
trajectory with large number of local maxima [6,7,8].  
Dynamic Logic algorithm introduces a fuzziness parameter 
in the likelihood that enables fast convergence without a 
need for the expensive grid search.  

The algorithm maximizes a product of the Gaussian density 
functions mixture that models cumulative, possibly non-
thresholded, measurements from all available frames. The 
maximization criterion also includes unknown weights of 
multiple target models S and the fuzziness parameter σ that 

corresponds to sensor uncertainty (Equation 1). Here Sk = 
(x0k, y0k, vxk, vyk) are track models and rk – track weights;  σ  
is the fuzziness parameter. [2] modifies the DL algorithm to 
process observations from multiple moving platforms. 
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Equation 1: Log Likelihood 

 

Tracks are detected in a unified optimization process that 
gradually decreases the fuzziness parameter of the 
optimization criterion and improves estimates of track 
parameters and track-signal association. The Dynamic 
Logic algorithm consists of the following steps (Figure 1): 

1. Optimize L over target model parameters S for a 
fixed value of parameter σ and association variables, 

2. Perform an expectation-maximization step over 
unknown associations, 

3. Gradually decrease the value of σ. 

At every iteration step, the algorithm simultaneously finds 
optimal solutions of likelihood L(σ) and decreases the value 
of the parameter σ. Optimization at smaller s starts with the 
previously found solution for larger s. As a result, the 
algorithm arrives at the solution of the original global 
optimization problem by solving multiple local 
optimization problems. 
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Figure 1: Dynamic Logic Tracker. 
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Track Detection Performance 
Figure 2 demonstrates evolution of the probability function 
of the estimated tracks for 1st, 5th, 10th and 20th iteration of 
the algorithm. Algorithm gradually decreases fuzziness of 
the PDF and uncovers multiple targets hidden in  the 
clutter. 

 
Figure 2: Evolution of the track model during 20 iterations 

 

DL ability to process large number of frames leads to 
further improvement in detection performance. Figure 3 
shows effect of increasing number of frames on detection 
probability.  

In this paper, we study computational complexity of multi-
target track detection in high GMTI clutter by DL 
algorithm. 
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Figure 3: Detection probability 

Computational Complexity 
In this section, we analyze computational complexity of the 
DL tracker. 

Complexity of each iterative likelihood estimate is linear in 
number of GMTI detections (and, thus, number of GMTI 
frames), in number of unknown target parameters (2-D 
position and velocity for the constant velocity model, RCS) 
and number of estimated tracks and clutter models. Number 
of algorithm iterations with the reducing fuzziness 
parameters is shown experimentally to be low (between 10 
and 50). Furthermore, later iterations with decreased 
fuzziness require processing only part of the data. 

Real-time requirements  
Algorithm processes simultaneously data from multiple 
GMTI frames in the surface area several times larger than 
the possible targets moving through the time of collected 
data. Raw GMTI data is reduced in size by low amplitude 
and Doppler thresholds. All consequent operations (Figure 
1) are done on full blocks of data requiring no data 
movement. Each data point in the reduced dataset is 
described by 4 floating point parameters (range, cross-
range, amplitude, range rate). Computations represent 
identical arithmetic operations on spatially and temporally 
consequent data points. Therefore, these computations can 
be efficiently performed on vector processors. In order to 
avoid memory bottlenecks, the amount of simultaneously 
processed data should be limited to L1 cache capacity.  

Processor and memory requirements can be specified given 
the GMTI acquisition rate and amount of clutter allowed 
through the detection threshold.  
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