
Speech Recognition on
Cell Broadband Engine

UCRL-PRES-223890

Yang Liu, Holger Jones, John Johnson, Sheila Vaidya
(Lawrence Livermore National Laboratory)

Michael Perrone, Borivoj Tydlitat, Ashwini Nanda
(IBM)

Daniel May
(Mississippi State)

GAIA
Graphics
Architectures for
Intelligence
Applications

Multi-Channel Speech Recognition

Motivation
Concurrent processing for thousands of speech channels!
Each CPU can process only a few (10-30) channels in real-time.

Real-time speech processing of high volume voice traffic
Can streaming architectures help achieve this goal?

Approach
Started with Mississippi State open source ISIP toolkit,

…ported feature extraction onto GPU, and then Cell,
…implemented isolated digit decoder for Cell,
…then connected digit decoder for Cell,
…and now recently connected phones.

Outline

Speech system
Feature extraction
Speech decoding

Cell implementation
Isolated digits (Viterbi decoder)
Connected digits (Level Building Algorithm)
Phones (lexicon / grammar)

Results
Future work

Speech System Overview

Speech System Components

Feature extraction
Encode audio channel into a sequence of feature vectors

Characterize spectral and temporal aspects of speech
Mel Frequency Cepstral Coefficients (MFCC) features model human
auditory response

Viterbi decoding
Hidden Markov Model (HMM) based pattern-matching

Model digits directly using HMMs
Dynamic programming

Baum-Welch training
HMM parameter estimation

Require training corpus

Feature Extraction

Twelve signal processing
stages:

Window Extraction
Zero Mean
Energy Computation
Preemphasis Filter
Hamming Window
Spectrum Computation (FFT)
Mel Frequency Computation
Cepstrum Computation
Discrete Cosine Transform
Lifter (Cepstral Filter)
Cepstrum Energy Norm
First and Second Derivatives

MFCC feature vector frame:
Represents 25 ms of audio w/
15 ms overlap (10 ms / frame)
250 floats per 25 ms of audio
(Pad to 256 for FFT/DCT)
Reduce to 39 coefficients
Real-time processing requires
100 frames per channel per
second

Normalize Cepstrum variance
for speaker-independence

Viterbi Decoding

Hidden Markov Models
Finite state machine that characterizes observation (MFCC) sequences

Transitional probabilities assigned to each directed edge
Each state generates an observation drawn from its PDF

Stochastically model the process of human speech synthesis

Viterbi algorithm
How are HMMs used to recognize digits from an observation sequence?

Sum up probability of all possible paths through the HMM that could have
generated the observation sequence
Too expensive, instead approximate this with the maximum likelihood path

Use dynamic programming to cache intermediate path probabilities

Cell Implementation

Decoding Isolated Digits

Easy problem
Digit word models
Exactly one digit per channel
Generalizes to more complex speech recognition

First experiment
Very fast prototyping
Estimate best performance on Cell

Components
Feature extraction
Viterbi decoding

Feature Extraction

Straightforward parallel implementation
Process 8 signals concurrently (packed into 2 arrays of quad-words)

FFT is the most computationally intense
Take advantage of IBM’s extremely optimized Cell FFT library
Data format conversion required to interface with FFT library

Hybrid implementation
Process audio channel in single pass
Data reduction computed on SPEs
First and second derivatives computed on PPE

Enforce a streaming model
Pipeline data communication, and avoid branches

Viterbi Decoding

Computational bottleneck!
Data-independent processing opportunity to leverage parallelism
Profile and identify kernels

Simplifying assumptions:
First order HMM
Strict left–right model, only allow self & forward transitions
PDF approximated by linear combination of four Gaussian kernels
(Gaussian Mixture Model – GMM)

For each HMM state:
Calculate observational probability (evaluate GMM)
Select maximum likelihood (between self and forward transition)

Viterbi Decoding

Data representation
Store HMM states in quad-
word vectors

SIMD parallelism
Transition probabilities across
model boundaries are zeroed
out to prevent “data
contamination”
Store only two columns;
perform computation “in place”

Isolated digit recognition
Seed with initial probability
Decode all HMMs in one pass
Extract final probabilities and
select maximum

Computation Kernels

Observation probability
Evaluate feature vector frame
at each state:

Maximum likelihood
Find likelihood of best path
through each HMM:

Must shift column vector up by
one element to align data
access

() ()obs P |i i=s x s

() () () ()
() ()
k-1

k
k-1

1 1

L slf
L obs max

L fwd
i i

i i
i i− −

⎧ +⎪= + ⎨ +⎪⎩

s s
s s

s s

SPE Programs

spe_mfcc_frontend
Convert audio sequence to MFCC frames

spe_decode_obs
Convert MFCC frames to observation probability

spe_decode_max
Maximum likelihood computation

Decoding Connected Digits

Multiple utterances in a frame sequence:
How many digits are there?
Where does one digit end and another begin?
What if the speaker talks too fast? (co-articulation)
(e.g. “two-oh”, “three-eight-two”, “nine-nine”, “six-seven-nine”)

One naïve approach:
Construct large HMM for every possible digit string
(e.g. “zero-zero-zero”, “zero-zero-one”)

Too many combinatoric possibilities!
Duplicate computation!

Decoding Connected Digits

Level Building Algorithm
Explore all possible combinatoric arrangements of HMMs…
…but cache intermediate computations

Basic idea:
First digit starts at frame 0, but may terminate anywhere
Decode second digit at each possible ending frame for the first digit
Now the second digit can end anywhere
Decoding results overlap, so select the best probability at each frame
Each frame also needs to maintain its starting frame pointer and label of
HMM with best probability
Organize computation into levels

Decode at most one digit per level

Level Building Algorithm

Multiple passes over MFCC frames
Observational probabilities computed in a single pass
Maximum-likelihood path computed over several passes

Bound computation using minimum and
maximum digit length expectations

Opportunity for dynamic pruning

Traceback step decodes digits in
reverse

PPE implementation
Drives spe_decode_max,
maintains bookkeeping, and
performs traceback

Decoding Phones

Linguistic phone
Atomic unit of speech
Support arbitrary vocabulary size
More efficient to decode than word models
Triphone models provide left / right context

Implementation
Not so different from word models
Fewer states per phone model fewer HMM state pruning
opportunities
Apply lexicon / language grammar to decode valid words from phones
(more later)

Preliminary Results

Experiment Setup

Vocabulary
Recognize digit phones
3 state phone HMMs
20 classes, 57 total states

Gaussian Mixture Model
4 Gaussians per mixture
One mixture per state

Corpus
TIDIGITS

Connected phone recognition
Level Building Algorithm
Phones between 5 to 20
frames

Training
HMMs trained off-line using
MS ISIP’s Baum-Welch

Platforms
3.2 GHz Pentium (CPU)
4.0 GHz Cell simulator (SIM)
2.0 GHz Cell beta hardware
(CELL)

System Performance

Real Time Channels (100 frames / sec)

101315685Total (FE + CP)
109816256Connected Phones
1323545000500Feature Extraction

CELL (2.0 GHz)SIM (4.0 GHz)CPU (3.2 GHz)

Timing methodology:
Ignored initialization and network I/O
gettimeofday() wrapper around critical code
Timed for single SPE, extrapolated to all 8

Gained at least two orders of magnitude of performance on Cell,
but does not include lexicon / grammar / pruning optimizations!

Sample Run

[root@(none) speech]# ./decode.ppe
Allocating levels...
Loading Gaussian means...
Loading Gaussian inverse variances...
Loading Gaussian weight factors...
Loading Gaussian scale factors...
Loading transitional probabilities...
Loading MFCC file...242 frames.
Computing observational probabilities...
Decoding maximum likelihood...
nLevels = 48
min_levels = 9
prob = -17111.398438
Decoded: [sil] f ay v n ay n ah ay n s eh v ih n s w ih k s [sil]
Obs time: 0.002181 seconds.
Max time: 0.002976 seconds.
Tot time: 0.005157 seconds.
Cleaning up...
[root@(none) speech]# _

Next Steps…

Sample Decode

Speech decode using only acoustic phone models:
[sil] f ay v n ay n ah ay n s eh v ih n s w ih k s [sil]
([sil] five nine nine seven six [sil])

What is “swihks”?

Apply lexicon constraints to decode actual words from phones
Implement lexicon at level boundaries in LBA on PPE

Lexicon

Phone transcriptions
FOUR – f ow r
FIVE – f ay v
SIX – s ih k s

Lexical graph

Implementation
Must maintain state for each
decode
Managed by Level Building
Algorithm on PPE
Opportunity to also apply
phone bi-gram / tri-gram
Difficult to leverage SIMD
parallelismf

ow

ay

r

v

s ih k s

Larger Corpora

TIDIGITS (Early Prototyping)
326 speakers (111 men, 114
women, 50 boys, and 51 girls)
Each pronounce 77 digit
sequences, 11 words, no
grammar

TIMIT (Develop Phonetic
System)

630 speakers (representing 8
major dialects of US)
Each speak 10 sentences
~6000 words, limited grammar

Wall Street Journal (WSJ)
Read from WSJ news text
Also includes spontaneous
dictation

Switchboard (Real Speech
Problem)

2430 spontaneous
conversations from over 500
speakers across telephone
Noisy data, speech vs. non-
speech (stuttering, incomplete
words, etc)
Unknown vocabulary and/or
language grammar

Future Work

Larger vocabulary
More challenging corpora (WSJ, Switchboard) for performance /
accuracy tradeoff study
Lexicon / language grammar (bigram / trigram)

PPE optimizations
Model / word level hierarchical pruning
SPE system load balancing

SPE optimizations
Chain feature extraction kernels (pending DMA issues)
Tied Gaussian mixtures
HMM-level pruning

Questions?

Contact:
Yang Liu (liu24@llnl.gov)
Holger Jones (jones19@llnl.gov)

