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ABSTRACT
Speech processing involves several computationally inten-
sive tasks that may benefit from hardware acceleration on
streaming computer architectures. However, identifying and
exploiting parallelism opportunities in this computation rep-
resents a significant challenge, especially given the scope of
the problem and the data formats necessary in order to max-
imize the hardware resources. We present in this poster our
design, implementation, and first results of a connected-digit
speech recognition system on the Cell Broadband Engine
architecture using the TI-DIGITS corpus. The key compo-
nents of this basic system are implemented as efficient and
compact kernels for the SPE processors and are reusable for
more sophisticated speech recognition systems. Our early
benchmarking efforts indicate that the performance of this
prototype system is 64 times faster than than the reference
ISIP software implementation, which emphasizes the Cell’s
potential for full speech processing. This poster also identi-
fies some next steps in this work such as applying subword
(phone) models to accomodate larger vocabulary sizes, and
incorporating language grammar models and rules to reduce
the overall complexity of this computation.

1. INTRODUCTION
Speech processing has already been successfully incorpo-
rated into many application areas and commercial products
on portable and embedded devices, despite their limited pro-
cessing capabilities. However, other applications, such as
telephony for automatic call centers, which receive and must
process thousands of speech channels, have much larger re-
quirements in computation and recognition accuracy. These
requirements continue to grow and will soon exceed the pro-
cessing capabilities of commercially available systems. The
traditional approach of distributing this computation across
a set of computer nodes is not a viable solution in the long
term since compute clusters generally do not scale well –
they are expensive to build and maintain, and other con-
siderations such as physical space and power consumption

rates will limit their practical deployment. However, re-
cent trends have shown that streaming architectures, such
as the Cell Broadband Engine, designed for task or data-
level parallelism, have better cost-performance than tradi-
tional computer architectures optimized for instruction-level
parallelism. At 3.2 GHz, the Cell processor has a peak per-
formance of 230 GFLOPS, which is roughly 9 times greater
than the performance of a dual-core 3.2 GHz Pentium pro-
cessor. Furthermore, the Cell’s communication model also
allows memory-bound applications to conceal data transfer
lantencies. Speech recognition often involves a great deal
of computation and data management, which suggests that
Cell might be an efficient architecture for performing this
type of processing. In this study, we implement a prototype
connected-digit speech recognition on Cell to see how much
of its computational potential can be leveraged for speech
processing.

2. CELL PROCESSOR
The Cell processor contains a Power Processing Engine (PPE)
and eight Synergistic Processing Engines (SPEs). The PPE
is a basic PowerPC core with a VMX unit. The PPE exe-
cutes the operating system and is typically responsible for
directing the activities of SPEs, where the the bulk of the
parallel computation is performed. Each SPE consists of
a 128-bit register file with 128 registers and 256K of local
memory, and two in-order dual-issue pipelines. The large
register file simplifies register renaming operations to allow
higher levels of compiler optimization. The 128-bit register
can be used to represent different vector sets of bytes, half-
words, and words. Each SPE also provides SIMD arithmetic
and logic instructions (SPE intrinsics) to operate over these
vectors and achieve multiple operations per clock.

Data transactions between SPEs and the PPE are conducted
via DMA transfers, which may be initiated from the PPE
or a SPE. By utilizing predictable data access patterns,
DMA transfer latencies can be effectively concealed using
double-buffering techniques to pipeline memory movement
with instruction execution. This is an important advantage
over traditional computer architectures, which instead relies
upon large caches to achieve performance. Programs for the
PPE and SPE are written and compiled separately and may
be linked either statically at compile-time or dynamically
at runtime. SPE programs may take advantage of the vec-
tor instruction sets and dual-issue pipeline, while PPE pro-
grams typically organize and direct the computation. The
Cell API uses a threaded interface to manage SPE programs,
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Figure 1: A real-time speech recognition system
generally consists of two parts: feature extraction
and decoding. A complete speech processing system
also includes training, but this step is usually very
computationally expensive and typically performed
in an offline process.

and atomic semaphor instructions manage synchronization
between SPE-SPE and SPE-PPE to provide flexibility in
implementing the necessary communication models.

3. SPEECH RECOGNITION
A speech recognition system 1 extracts features from an au-
dio channel and then applies pattern-matching to identify
units of speech, which are then further parsed into words
and sentences. The feature extraction front-end generates a
sequence of feature vectors from an audio channel to capture
unique and/or general spectral and temporal properties of
the signal. The extracted features are typically based upon
the Mel Frequency Cepstral Coefficients (MFCCs) – a signal
representation standard adopted by the speech recognition
community. The pattern-matching part of this system is
implemented using a Hidden Markov Model (HMM), which
is a finite state machine (FSM) that models the stochas-
tic processes involved in speech synthesis. HMMs can di-
rectly model units of speech such as phones, tri-phones,
or words, but require a significant amount of transcribed
training data. The HMM decodes speech by computing a
maximum-likelihood path computation through the FSM.
This path is computed by the Viterbi and Level-Building
algorithm, which are based upon dynamic programming.

4. CELL IMPLEMENTATION
The MFCC feature extraction front-end is implemented by
a set of signal processing filters in a SPE program. Each
feature vector represents a 25 ms frame of speech, with 15
ms of overlap with its neighboring frame (e.g. 100 feature
vectors are generated from 1 s of speech). Audio data must
be packed into quad-words in order to achieve maximum
parallelism in the computation.

The Vitebi algorithm is implemented by two SPE programs.
The first, decode obs computes only the observational prob-
abilities from the decoded MFCCs, and the second, de-
code max computes the maximum likelihood using the com-
puted observational probabilities. This factorization is use-
ful because the observational probabilities need only be com-
puted once in a single pass, while the Level Building algo-
rithm (implemented on the PPE) may require several iter-
ations over the maximum likelihood computation. Within
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Figure 2: The Viterbi algorithm is implemented us-
ing SIMD parallelism by stacking multiple HMMs
together.

the decode obs and decode max kernels, HMMs are stacked 2
together to achieve SIMD parallelism. HMM boundaries are
delinated using the state transitional probabilities to prevent
values in one HMM from contaminating its neighbor.

5. RESULTS
Our prototype system recognizes ten unique digits (“zero”
through “nine”), along with “oh” and “(sil)”, modeled by 12
HMMs. We use a Gaussian Mixture Model, with 4 Gaus-
sian kernels to characterize the observational probabilities
at each state (we have plans to tie Gaussian parameters
together to reduce the space and time complexity of the de-
coding). The system decodes up to four digits at a time at a
rate of approximately 1,500 channels per second (1,500
seconds of audio time per second of processing time). Our
system performs 64 times faster than the ISIP software im-
plementation, which only decodes audio at 23 channels per
second. Future work includes implementing phone models to
expand the vocabulary size and hierarchical pruning strate-
gies to reduce the total amount of computation.
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